Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | 2018 IEEE International Conference on Image Processing, ICIP 2018 - Proceedings |
Herausgeber (Verlag) | IEEE Computer Society |
Seiten | 3079-3083 |
Seitenumfang | 5 |
ISBN (elektronisch) | 9781479970612 |
Publikationsstatus | Veröffentlicht - 1 Okt. 2018 |
Veranstaltung | 25th IEEE International Conference on Image Processing, ICIP 2018 - Athens, Griechenland Dauer: 7 Okt. 2018 → 10 Okt. 2018 |
Publikationsreihe
Name | Proceedings - International Conference on Image Processing, ICIP |
---|---|
ISSN (Print) | 1522-4880 |
Abstract
The detection of vehicles in aerial images is widely applied in many domains. In this paper, we propose a novel double focal loss convolutional neural network framework (DFL-CNN). In the proposed framework, the skip connection is used in the CNN structure to enhance the feature learning. Also, the focal loss function is used to substitute for conventional cross entropy loss function in both of the region proposed network and the final classifier. We further introduce the first large-scale vehicle detection dataset ITCVD with ground truth annotations for all the vehicles in the scene. The experimental results show that our DFL-CNN outperforms the baselines on vehicle detection.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Software
- Informatik (insg.)
- Maschinelles Sehen und Mustererkennung
- Informatik (insg.)
- Signalverarbeitung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
2018 IEEE International Conference on Image Processing, ICIP 2018 - Proceedings. IEEE Computer Society, 2018. S. 3079-3083 8451454 (Proceedings - International Conference on Image Processing, ICIP).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Deep Learning for Vehicle Detection in Aerial Images
AU - Yang, Michael Ying
AU - Liao, Wentong
AU - Li, Xinbo
AU - Rosenhahn, Bodo
N1 - Funding information: The work is funded by DFG (German Research Foundation) YA 351/2-1 and RO 4804/2-1. The authors gratefully acknowledge NVIDIA Corporation for the donated GPU used in this research. We thank Slagboom en Peeters for providing the aerial images.
PY - 2018/10/1
Y1 - 2018/10/1
N2 - The detection of vehicles in aerial images is widely applied in many domains. In this paper, we propose a novel double focal loss convolutional neural network framework (DFL-CNN). In the proposed framework, the skip connection is used in the CNN structure to enhance the feature learning. Also, the focal loss function is used to substitute for conventional cross entropy loss function in both of the region proposed network and the final classifier. We further introduce the first large-scale vehicle detection dataset ITCVD with ground truth annotations for all the vehicles in the scene. The experimental results show that our DFL-CNN outperforms the baselines on vehicle detection.
AB - The detection of vehicles in aerial images is widely applied in many domains. In this paper, we propose a novel double focal loss convolutional neural network framework (DFL-CNN). In the proposed framework, the skip connection is used in the CNN structure to enhance the feature learning. Also, the focal loss function is used to substitute for conventional cross entropy loss function in both of the region proposed network and the final classifier. We further introduce the first large-scale vehicle detection dataset ITCVD with ground truth annotations for all the vehicles in the scene. The experimental results show that our DFL-CNN outperforms the baselines on vehicle detection.
KW - Convolutional neural network
KW - Focal loss
KW - ITCVD dataset
KW - Vehicle detection
UR - http://www.scopus.com/inward/record.url?scp=85062921480&partnerID=8YFLogxK
U2 - 10.1109/icip.2018.8451454
DO - 10.1109/icip.2018.8451454
M3 - Conference contribution
AN - SCOPUS:85062921480
T3 - Proceedings - International Conference on Image Processing, ICIP
SP - 3079
EP - 3083
BT - 2018 IEEE International Conference on Image Processing, ICIP 2018 - Proceedings
PB - IEEE Computer Society
T2 - 25th IEEE International Conference on Image Processing, ICIP 2018
Y2 - 7 October 2018 through 10 October 2018
ER -