Data-Based Moving Horizon Estimation for Linear Discrete-Time Systems

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Autoren

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des Sammelwerks2022 European Control Conference (ECC)
Erscheinungsort[Piscataway, NJ]
Seiten1778-1783
Seitenumfang6
ISBN (elektronisch)978-3-9071-4407-7
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 European Control Conference (ECC) - London, Großbritannien / Vereinigtes Königreich
Dauer: 12 Juli 202215 Juli 2022

Abstract

This paper introduces a data-based moving horizon estimation (MHE) scheme for linear time-invariant discrete-time systems. The scheme solely relies on collected data with-out employing any system identification step. Robust global exponential stability of the data-based MHE is proven under standard assumptions for the case where the online output measurements are corrupted by some non-vanishing measurement noise. A simulation example illustrates the behavior of the data-based MHE scheme.

ASJC Scopus Sachgebiete

Zitieren

Data-Based Moving Horizon Estimation for Linear Discrete-Time Systems. / Wolff, Tobias M.; Lopez, Victor G.; Müller, Matthias A.
2022 European Control Conference (ECC). [Piscataway, NJ], 2022. S. 1778-1783.

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Wolff, TM, Lopez, VG & Müller, MA 2022, Data-Based Moving Horizon Estimation for Linear Discrete-Time Systems. in 2022 European Control Conference (ECC). [Piscataway, NJ], S. 1778-1783, 2022 European Control Conference (ECC), London, Großbritannien / Vereinigtes Königreich, 12 Juli 2022. https://doi.org/10.23919/ECC55457.2022.9838331
Wolff TM, Lopez VG, Müller MA. Data-Based Moving Horizon Estimation for Linear Discrete-Time Systems. in 2022 European Control Conference (ECC). [Piscataway, NJ]. 2022. S. 1778-1783 doi: 10.23919/ECC55457.2022.9838331
Wolff, Tobias M. ; Lopez, Victor G. ; Müller, Matthias A. / Data-Based Moving Horizon Estimation for Linear Discrete-Time Systems. 2022 European Control Conference (ECC). [Piscataway, NJ], 2022. S. 1778-1783
Download
@inproceedings{969eeb8140db4595b431a1436628c779,
title = "Data-Based Moving Horizon Estimation for Linear Discrete-Time Systems",
abstract = "This paper introduces a data-based moving horizon estimation (MHE) scheme for linear time-invariant discrete-time systems. The scheme solely relies on collected data with-out employing any system identification step. Robust global exponential stability of the data-based MHE is proven under standard assumptions for the case where the online output measurements are corrupted by some non-vanishing measurement noise. A simulation example illustrates the behavior of the data-based MHE scheme.",
author = "Wolff, {Tobias M.} and Lopez, {Victor G.} and M{\"u}ller, {Matthias A.}",
note = "Funding Information: *This project has received funding from the European Research Council (ERC) under the European Union{\textquoteright}s Horizon 2020 research and innovation programme (grant agreement No 948679). 1Leibniz University Hannover, Institute of Control, 30167 Hannover, Germany. E-mail:; 2022 European Control Conference (ECC) ; Conference date: 12-07-2022 Through 15-07-2022",
year = "2022",
doi = "10.23919/ECC55457.2022.9838331",
language = "English",
isbn = "978-1-6654-9733-6",
pages = "1778--1783",
booktitle = "2022 European Control Conference (ECC)",

}

Download

TY - GEN

T1 - Data-Based Moving Horizon Estimation for Linear Discrete-Time Systems

AU - Wolff, Tobias M.

AU - Lopez, Victor G.

AU - Müller, Matthias A.

N1 - Funding Information: *This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 948679). 1Leibniz University Hannover, Institute of Control, 30167 Hannover, Germany. E-mail:

PY - 2022

Y1 - 2022

N2 - This paper introduces a data-based moving horizon estimation (MHE) scheme for linear time-invariant discrete-time systems. The scheme solely relies on collected data with-out employing any system identification step. Robust global exponential stability of the data-based MHE is proven under standard assumptions for the case where the online output measurements are corrupted by some non-vanishing measurement noise. A simulation example illustrates the behavior of the data-based MHE scheme.

AB - This paper introduces a data-based moving horizon estimation (MHE) scheme for linear time-invariant discrete-time systems. The scheme solely relies on collected data with-out employing any system identification step. Robust global exponential stability of the data-based MHE is proven under standard assumptions for the case where the online output measurements are corrupted by some non-vanishing measurement noise. A simulation example illustrates the behavior of the data-based MHE scheme.

UR - http://www.scopus.com/inward/record.url?scp=85136691216&partnerID=8YFLogxK

U2 - 10.23919/ECC55457.2022.9838331

DO - 10.23919/ECC55457.2022.9838331

M3 - Conference contribution

SN - 978-1-6654-9733-6

SP - 1778

EP - 1783

BT - 2022 European Control Conference (ECC)

CY - [Piscataway, NJ]

T2 - 2022 European Control Conference (ECC)

Y2 - 12 July 2022 through 15 July 2022

ER -

Von denselben Autoren