Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 044058 |
Fachzeitschrift | Physical Review D |
Jahrgang | 111 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - 19 Feb. 2025 |
Extern publiziert | Ja |
Abstract
We classify all possible cosmological homogeneous and isotropic Landsberg-type Finsler structures, in four dimensions. Among them, we identify viable nonstationary Finsler spacetimes, i.e., those geometries leading to a physical causal structure and a dynamical universe. Noting that any nonstationary and non-Riemannian Landsberg metric must be actually also non-Berwald (i.e., it should be a so-called "unicorn"), we construct the unique Finsler, non-Berwaldian Landsberg generalization of Friedmann-Lemaître-Robertson-Walker geometry.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Kern- und Hochenergiephysik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical Review D, Jahrgang 111, Nr. 4, 044058, 19.02.2025.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Cosmological Landsberg-Finsler spacetimes
AU - Friedl-Szász, Annamária
AU - Popovici-Popescu, Elena
AU - Voicu, Nicoleta
AU - Pfeifer, Christian
AU - Heefer, Sjors
PY - 2025/2/19
Y1 - 2025/2/19
N2 - We classify all possible cosmological homogeneous and isotropic Landsberg-type Finsler structures, in four dimensions. Among them, we identify viable nonstationary Finsler spacetimes, i.e., those geometries leading to a physical causal structure and a dynamical universe. Noting that any nonstationary and non-Riemannian Landsberg metric must be actually also non-Berwald (i.e., it should be a so-called "unicorn"), we construct the unique Finsler, non-Berwaldian Landsberg generalization of Friedmann-Lemaître-Robertson-Walker geometry.
AB - We classify all possible cosmological homogeneous and isotropic Landsberg-type Finsler structures, in four dimensions. Among them, we identify viable nonstationary Finsler spacetimes, i.e., those geometries leading to a physical causal structure and a dynamical universe. Noting that any nonstationary and non-Riemannian Landsberg metric must be actually also non-Berwald (i.e., it should be a so-called "unicorn"), we construct the unique Finsler, non-Berwaldian Landsberg generalization of Friedmann-Lemaître-Robertson-Walker geometry.
UR - http://www.scopus.com/inward/record.url?scp=85218762174&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.111.044058
DO - 10.1103/PhysRevD.111.044058
M3 - Article
VL - 111
JO - Physical Review D
JF - Physical Review D
SN - 2470-0010
IS - 4
M1 - 044058
ER -