Convolutional neural network for retrieval of the time-dependent bond length in a molecule from photoelectron momentum distributions

Publikation: Beitrag in FachzeitschriftLetterForschungPeer-Review

Autorschaft

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer06LT01
Seitenumfang8
FachzeitschriftJournal of Physics B: Atomic, Molecular and Optical Physics
Jahrgang57
Ausgabenummer6
PublikationsstatusVeröffentlicht - 6 März 2024

Abstract

We apply deep learning for retrieval of the time-dependent bond length in the dissociating two-dimensional H+2 molecule using photoelectron momentum distributions. We consider a pump-probe scheme and calculate electron momentum distributions from strong-field ionization by treating the motion of the nuclei classically, semiclassically or quantum mechanically. A convolutional neural network trained on momentum distributions obtained at fixed internuclear distances retrieves the time-varying bond length with an absolute error of 0.2–0.3 a.u.

ASJC Scopus Sachgebiete

Zitieren

Convolutional neural network for retrieval of the time-dependent bond length in a molecule from photoelectron momentum distributions. / Shvetsov-Shilovski, N. I.; Lein, M.
in: Journal of Physics B: Atomic, Molecular and Optical Physics, Jahrgang 57, Nr. 6, 06LT01, 06.03.2024.

Publikation: Beitrag in FachzeitschriftLetterForschungPeer-Review

Download
@article{fb01b9a569f54502b7827cafb9e8474e,
title = "Convolutional neural network for retrieval of the time-dependent bond length in a molecule from photoelectron momentum distributions",
abstract = "We apply deep learning for retrieval of the time-dependent bond length in the dissociating two-dimensional H+2 molecule using photoelectron momentum distributions. We consider a pump-probe scheme and calculate electron momentum distributions from strong-field ionization by treating the motion of the nuclei classically, semiclassically or quantum mechanically. A convolutional neural network trained on momentum distributions obtained at fixed internuclear distances retrieves the time-varying bond length with an absolute error of 0.2–0.3 a.u.",
keywords = "deep learning, photoelectron momentum distributions, strong-field ionization, time-dependent internuclear distance",
author = "Shvetsov-Shilovski, {N. I.} and M. Lein",
note = "Funding Information: This work was supported by the Deutsche Forschungsgemeinschaft (Project No. 336041027). ",
year = "2024",
month = mar,
day = "6",
doi = "10.48550/arXiv.2312.14636",
language = "English",
volume = "57",
journal = "Journal of Physics B: Atomic, Molecular and Optical Physics",
issn = "0953-4075",
publisher = "IOP Publishing Ltd.",
number = "6",

}

Download

TY - JOUR

T1 - Convolutional neural network for retrieval of the time-dependent bond length in a molecule from photoelectron momentum distributions

AU - Shvetsov-Shilovski, N. I.

AU - Lein, M.

N1 - Funding Information: This work was supported by the Deutsche Forschungsgemeinschaft (Project No. 336041027).

PY - 2024/3/6

Y1 - 2024/3/6

N2 - We apply deep learning for retrieval of the time-dependent bond length in the dissociating two-dimensional H+2 molecule using photoelectron momentum distributions. We consider a pump-probe scheme and calculate electron momentum distributions from strong-field ionization by treating the motion of the nuclei classically, semiclassically or quantum mechanically. A convolutional neural network trained on momentum distributions obtained at fixed internuclear distances retrieves the time-varying bond length with an absolute error of 0.2–0.3 a.u.

AB - We apply deep learning for retrieval of the time-dependent bond length in the dissociating two-dimensional H+2 molecule using photoelectron momentum distributions. We consider a pump-probe scheme and calculate electron momentum distributions from strong-field ionization by treating the motion of the nuclei classically, semiclassically or quantum mechanically. A convolutional neural network trained on momentum distributions obtained at fixed internuclear distances retrieves the time-varying bond length with an absolute error of 0.2–0.3 a.u.

KW - deep learning

KW - photoelectron momentum distributions

KW - strong-field ionization

KW - time-dependent internuclear distance

UR - http://www.scopus.com/inward/record.url?scp=85187527598&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2312.14636

DO - 10.48550/arXiv.2312.14636

M3 - Letter

AN - SCOPUS:85187527598

VL - 57

JO - Journal of Physics B: Atomic, Molecular and Optical Physics

JF - Journal of Physics B: Atomic, Molecular and Optical Physics

SN - 0953-4075

IS - 6

M1 - 06LT01

ER -

Von denselben Autoren