Convolutional Neural Network for High-Resolution Cloud Motion Prediction from Hemispheric Sky Images

Publikation: Beitrag in FachzeitschriftArtikelForschung

Autoren

  • Cristian Crisosto
  • Eduardo W. Luiz
  • Gunther Seckmeyer
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer753
FachzeitschriftEnergies
Jahrgang14
Ausgabenummer3
PublikationsstatusVeröffentlicht - 1 Feb. 2021

Abstract

A novel high-resolution method for forecasting cloud motion from all-sky images using deep learning is presented. A convolutional neural network (CNN) was created and trained with more than two years of all-sky images, recorded by a hemispheric sky imager (HSI) at the Institute of Meteorology and Climatology (IMUK) of the Leibniz Universität Hannover, Hannover, Germany. Using the haze indexpostprocessing algorithm, cloud characteristics were found, and the deformation vector of each cloud was performed and used as ground truth. The CNN training process was built to predict cloud motion up to 10 min ahead, in a sequence of HSI images, tracking clouds frame by frame. The first two simulated minutes show a strong similarity between simulated and measured cloud motion, which allows photovoltaic (PV) companies to make accurate horizon time predictions and better marketing decisions for primary and secondary control reserves. This cloud motion algorithm principally targets global irradiance predictions as an application for electrical engineering and in PV output predictions. Comparisons between the results of the predicted region of interest of a cloud by the proposed method and real cloud position show a mean Sørensen–Dice similarity coefficient (SD) of 94 ± 2.6% (mean ± standard deviation) for the first minute, outperforming the persistence model (89 ± 3.8%). As the forecast time window increased the index decreased to 44.4 ± 12.3% for the CNN and 37.8 ± 16.4% for the persistence model for 10 min ahead forecast. In addition, up to 10 min global horizontal irradiance was also derived using a feed-forward artificial neural network technique for each CNN forecasted image. Therefore, the new algorithm presented here increases the SD approximately 15% compared to the reference persistence model.

Zitieren

Convolutional Neural Network for High-Resolution Cloud Motion Prediction from Hemispheric Sky Images. / Crisosto, Cristian; Luiz, Eduardo W.; Seckmeyer, Gunther.
in: Energies, Jahrgang 14, Nr. 3, 753, 01.02.2021.

Publikation: Beitrag in FachzeitschriftArtikelForschung

Crisosto C, Luiz EW, Seckmeyer G. Convolutional Neural Network for High-Resolution Cloud Motion Prediction from Hemispheric Sky Images. Energies. 2021 Feb 1;14(3):753. doi: 10.3390/en14030753
Crisosto, Cristian ; Luiz, Eduardo W. ; Seckmeyer, Gunther. / Convolutional Neural Network for High-Resolution Cloud Motion Prediction from Hemispheric Sky Images. in: Energies. 2021 ; Jahrgang 14, Nr. 3.
Download
@article{91c6fc3edf614bb797d91b987683acd9,
title = "Convolutional Neural Network for High-Resolution Cloud Motion Prediction from Hemispheric Sky Images",
abstract = "A novel high-resolution method for forecasting cloud motion from all-sky images using deep learning is presented. A convolutional neural network (CNN) was created and trained with more than two years of all-sky images, recorded by a hemispheric sky imager (HSI) at the Institute of Meteorology and Climatology (IMUK) of the Leibniz Universit{\"a}t Hannover, Hannover, Germany. Using the haze indexpostprocessing algorithm, cloud characteristics were found, and the deformation vector of each cloud was performed and used as ground truth. The CNN training process was built to predict cloud motion up to 10 min ahead, in a sequence of HSI images, tracking clouds frame by frame. The first two simulated minutes show a strong similarity between simulated and measured cloud motion, which allows photovoltaic (PV) companies to make accurate horizon time predictions and better marketing decisions for primary and secondary control reserves. This cloud motion algorithm principally targets global irradiance predictions as an application for electrical engineering and in PV output predictions. Comparisons between the results of the predicted region of interest of a cloud by the proposed method and real cloud position show a mean S{\o}rensen–Dice similarity coefficient (SD) of 94 ± 2.6% (mean ± standard deviation) for the first minute, outperforming the persistence model (89 ± 3.8%). As the forecast time window increased the index decreased to 44.4 ± 12.3% for the CNN and 37.8 ± 16.4% for the persistence model for 10 min ahead forecast. In addition, up to 10 min global horizontal irradiance was also derived using a feed-forward artificial neural network technique for each CNN forecasted image. Therefore, the new algorithm presented here increases the SD approximately 15% compared to the reference persistence model.",
keywords = "All-sky image, Cloud motion prediction, Convolutional neural network",
author = "Cristian Crisosto and Luiz, {Eduardo W.} and Gunther Seckmeyer",
note = "Funding Information: Acknowledgments: The publication of this article was funded by the Open Access fund of Leibniz Universit{\"a}t Hannover.",
year = "2021",
month = feb,
day = "1",
doi = "10.3390/en14030753",
language = "English",
volume = "14",
journal = "Energies",
issn = "1996-1073",
publisher = "Multidisciplinary Digital Publishing Institute",
number = "3",

}

Download

TY - JOUR

T1 - Convolutional Neural Network for High-Resolution Cloud Motion Prediction from Hemispheric Sky Images

AU - Crisosto, Cristian

AU - Luiz, Eduardo W.

AU - Seckmeyer, Gunther

N1 - Funding Information: Acknowledgments: The publication of this article was funded by the Open Access fund of Leibniz Universität Hannover.

PY - 2021/2/1

Y1 - 2021/2/1

N2 - A novel high-resolution method for forecasting cloud motion from all-sky images using deep learning is presented. A convolutional neural network (CNN) was created and trained with more than two years of all-sky images, recorded by a hemispheric sky imager (HSI) at the Institute of Meteorology and Climatology (IMUK) of the Leibniz Universität Hannover, Hannover, Germany. Using the haze indexpostprocessing algorithm, cloud characteristics were found, and the deformation vector of each cloud was performed and used as ground truth. The CNN training process was built to predict cloud motion up to 10 min ahead, in a sequence of HSI images, tracking clouds frame by frame. The first two simulated minutes show a strong similarity between simulated and measured cloud motion, which allows photovoltaic (PV) companies to make accurate horizon time predictions and better marketing decisions for primary and secondary control reserves. This cloud motion algorithm principally targets global irradiance predictions as an application for electrical engineering and in PV output predictions. Comparisons between the results of the predicted region of interest of a cloud by the proposed method and real cloud position show a mean Sørensen–Dice similarity coefficient (SD) of 94 ± 2.6% (mean ± standard deviation) for the first minute, outperforming the persistence model (89 ± 3.8%). As the forecast time window increased the index decreased to 44.4 ± 12.3% for the CNN and 37.8 ± 16.4% for the persistence model for 10 min ahead forecast. In addition, up to 10 min global horizontal irradiance was also derived using a feed-forward artificial neural network technique for each CNN forecasted image. Therefore, the new algorithm presented here increases the SD approximately 15% compared to the reference persistence model.

AB - A novel high-resolution method for forecasting cloud motion from all-sky images using deep learning is presented. A convolutional neural network (CNN) was created and trained with more than two years of all-sky images, recorded by a hemispheric sky imager (HSI) at the Institute of Meteorology and Climatology (IMUK) of the Leibniz Universität Hannover, Hannover, Germany. Using the haze indexpostprocessing algorithm, cloud characteristics were found, and the deformation vector of each cloud was performed and used as ground truth. The CNN training process was built to predict cloud motion up to 10 min ahead, in a sequence of HSI images, tracking clouds frame by frame. The first two simulated minutes show a strong similarity between simulated and measured cloud motion, which allows photovoltaic (PV) companies to make accurate horizon time predictions and better marketing decisions for primary and secondary control reserves. This cloud motion algorithm principally targets global irradiance predictions as an application for electrical engineering and in PV output predictions. Comparisons between the results of the predicted region of interest of a cloud by the proposed method and real cloud position show a mean Sørensen–Dice similarity coefficient (SD) of 94 ± 2.6% (mean ± standard deviation) for the first minute, outperforming the persistence model (89 ± 3.8%). As the forecast time window increased the index decreased to 44.4 ± 12.3% for the CNN and 37.8 ± 16.4% for the persistence model for 10 min ahead forecast. In addition, up to 10 min global horizontal irradiance was also derived using a feed-forward artificial neural network technique for each CNN forecasted image. Therefore, the new algorithm presented here increases the SD approximately 15% compared to the reference persistence model.

KW - All-sky image

KW - Cloud motion prediction

KW - Convolutional neural network

UR - http://www.scopus.com/inward/record.url?scp=85106299649&partnerID=8YFLogxK

U2 - 10.3390/en14030753

DO - 10.3390/en14030753

M3 - Article

VL - 14

JO - Energies

JF - Energies

SN - 1996-1073

IS - 3

M1 - 753

ER -