Convexity and unique minimum points

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Josef Berger
  • G. Svindland

Externe Organisationen

  • Ludwig-Maximilians-Universität München (LMU)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)27-34
Seitenumfang8
FachzeitschriftArchive for mathematical logic
Jahrgang58
Ausgabenummer1-2
Frühes Online-Datum22 Feb. 2018
PublikationsstatusVeröffentlicht - 5 Feb. 2019
Extern publiziertJa

Abstract

We show constructively that every quasi-convex, uniformly continuous function f: C→ R with at most one minimum point has a minimum point, where C is a convex compact subset of a finite dimensional normed space. Applications include a result on strictly quasi-convex functions, a supporting hyperplane theorem, and a short proof of the constructive fundamental theorem of approximation theory.

ASJC Scopus Sachgebiete

Zitieren

Convexity and unique minimum points. / Berger, Josef; Svindland, G.
in: Archive for mathematical logic, Jahrgang 58, Nr. 1-2, 05.02.2019, S. 27-34.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Berger J, Svindland G. Convexity and unique minimum points. Archive for mathematical logic. 2019 Feb 5;58(1-2):27-34. Epub 2018 Feb 22. doi: 10.1007/s00153-018-0619-2
Berger, Josef ; Svindland, G. / Convexity and unique minimum points. in: Archive for mathematical logic. 2019 ; Jahrgang 58, Nr. 1-2. S. 27-34.
Download
@article{daa709e7f47f4871b226defbb4ac82a3,
title = "Convexity and unique minimum points",
abstract = "We show constructively that every quasi-convex, uniformly continuous function f: C→ R with at most one minimum point has a minimum point, where C is a convex compact subset of a finite dimensional normed space. Applications include a result on strictly quasi-convex functions, a supporting hyperplane theorem, and a short proof of the constructive fundamental theorem of approximation theory.",
keywords = "Approximation theory, Bishop{\textquoteright}s constructive mathematics, Convex sets and functions, Supporting hyperplanes",
author = "Josef Berger and G. Svindland",
note = "Publisher Copyright: {\textcopyright} 2018, Springer-Verlag GmbH Germany, part of Springer Nature.",
year = "2019",
month = feb,
day = "5",
doi = "10.1007/s00153-018-0619-2",
language = "English",
volume = "58",
pages = "27--34",
journal = "Archive for mathematical logic",
issn = "0933-5846",
publisher = "Springer New York",
number = "1-2",

}

Download

TY - JOUR

T1 - Convexity and unique minimum points

AU - Berger, Josef

AU - Svindland, G.

N1 - Publisher Copyright: © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

PY - 2019/2/5

Y1 - 2019/2/5

N2 - We show constructively that every quasi-convex, uniformly continuous function f: C→ R with at most one minimum point has a minimum point, where C is a convex compact subset of a finite dimensional normed space. Applications include a result on strictly quasi-convex functions, a supporting hyperplane theorem, and a short proof of the constructive fundamental theorem of approximation theory.

AB - We show constructively that every quasi-convex, uniformly continuous function f: C→ R with at most one minimum point has a minimum point, where C is a convex compact subset of a finite dimensional normed space. Applications include a result on strictly quasi-convex functions, a supporting hyperplane theorem, and a short proof of the constructive fundamental theorem of approximation theory.

KW - Approximation theory

KW - Bishop’s constructive mathematics

KW - Convex sets and functions

KW - Supporting hyperplanes

UR - http://www.scopus.com/inward/record.url?scp=85042219120&partnerID=8YFLogxK

U2 - 10.1007/s00153-018-0619-2

DO - 10.1007/s00153-018-0619-2

M3 - Article

VL - 58

SP - 27

EP - 34

JO - Archive for mathematical logic

JF - Archive for mathematical logic

SN - 0933-5846

IS - 1-2

ER -