Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 873-881 |
Seitenumfang | 9 |
Fachzeitschrift | Archive for mathematical logic |
Jahrgang | 55 |
Ausgabenummer | 7-8 |
Publikationsstatus | Veröffentlicht - 1 Nov. 2016 |
Extern publiziert | Ja |
Abstract
We show constructively that every quasi-convex uniformly continuous function f: C → R + has positive infimum, where C is a convex compact subset of R n. This implies a constructive separation theorem for convex sets.
ASJC Scopus Sachgebiete
- Geisteswissenschaftliche Fächer (insg.)
- Philosophie
- Mathematik (insg.)
- Logik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Archive for mathematical logic, Jahrgang 55, Nr. 7-8, 01.11.2016, S. 873-881.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Convexity and constructive infima
AU - Berger, Josef
AU - Svindland, G.
N1 - Publisher Copyright: © 2016, Springer-Verlag Berlin Heidelberg.
PY - 2016/11/1
Y1 - 2016/11/1
N2 - We show constructively that every quasi-convex uniformly continuous function f: C → R + has positive infimum, where C is a convex compact subset of R n. This implies a constructive separation theorem for convex sets.
AB - We show constructively that every quasi-convex uniformly continuous function f: C → R + has positive infimum, where C is a convex compact subset of R n. This implies a constructive separation theorem for convex sets.
KW - Bishop’s constructive mathematics
KW - Brouwer’s fan theorem
KW - Convex functions
KW - Separating hyperplanes
UR - http://www.scopus.com/inward/record.url?scp=84984795708&partnerID=8YFLogxK
U2 - 10.1007/s00153-016-0502-y
DO - 10.1007/s00153-016-0502-y
M3 - Article
VL - 55
SP - 873
EP - 881
JO - Archive for mathematical logic
JF - Archive for mathematical logic
SN - 0933-5846
IS - 7-8
ER -