Convergence of the Yamabe flow on singular spaces with positive Yamabe constant

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Gilles Carron
  • Jørgen Olsen Lye
  • Boris Vertman

Externe Organisationen

  • Universite de Nantes
  • Carl von Ossietzky Universität Oldenburg
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)561-615
Seitenumfang55
FachzeitschriftTohoku Mathematical Journal
Jahrgang75
Ausgabenummer4
PublikationsstatusVeröffentlicht - 2023
Extern publiziertJa

Abstract

In this work, we study the convergence of the normalized Yamabe flow with positive Yamabe constant on a class of pseudo-manifolds that includes stratified spaces with iterated cone-edge metrics. We establish convergence under a low-energy condition. We also prove a concentration-compactness dichotomy, and investigate what the alternatives to convergence are. We end by investigating a non-convergent example due to Viaclovsky in more detail.

ASJC Scopus Sachgebiete

Zitieren

Convergence of the Yamabe flow on singular spaces with positive Yamabe constant. / Carron, Gilles; Lye, Jørgen Olsen; Vertman, Boris.
in: Tohoku Mathematical Journal, Jahrgang 75, Nr. 4, 2023, S. 561-615.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Carron G, Lye JO, Vertman B. Convergence of the Yamabe flow on singular spaces with positive Yamabe constant. Tohoku Mathematical Journal. 2023;75(4):561-615. doi: 10.48550/arXiv.2106.01799, 10.2748/tmj.20220616
Carron, Gilles ; Lye, Jørgen Olsen ; Vertman, Boris. / Convergence of the Yamabe flow on singular spaces with positive Yamabe constant. in: Tohoku Mathematical Journal. 2023 ; Jahrgang 75, Nr. 4. S. 561-615.
Download
@article{87129d3cf7e243b4b9bb62fa83705450,
title = "Convergence of the Yamabe flow on singular spaces with positive Yamabe constant",
abstract = "In this work, we study the convergence of the normalized Yamabe flow with positive Yamabe constant on a class of pseudo-manifolds that includes stratified spaces with iterated cone-edge metrics. We establish convergence under a low-energy condition. We also prove a concentration-compactness dichotomy, and investigate what the alternatives to convergence are. We end by investigating a non-convergent example due to Viaclovsky in more detail.",
keywords = "positive scalar curvature, singular analysis, Yamabe flow",
author = "Gilles Carron and Lye, {J{\o}rgen Olsen} and Boris Vertman",
note = "Funding Information: 2020 Mathematics Subject Classification. Primary 53C18; Secondary 58J35, 35K59. Key words and phrases. Yamabe flow, singular analysis, positive scalar curvature. The first author is partially supported by the ANR grant ANR-17-CE40-0034: CCEM and ANR-18-CE40-0012: RAGE and he thanks the Centre Henri Lebesgue ANR-11-LABX-0020-01 for creating an attractive mathematical environment. ",
year = "2023",
doi = "10.48550/arXiv.2106.01799",
language = "English",
volume = "75",
pages = "561--615",
journal = "Tohoku Mathematical Journal",
issn = "0040-8735",
publisher = "Tohoku University, Mathematical Institute",
number = "4",

}

Download

TY - JOUR

T1 - Convergence of the Yamabe flow on singular spaces with positive Yamabe constant

AU - Carron, Gilles

AU - Lye, Jørgen Olsen

AU - Vertman, Boris

N1 - Funding Information: 2020 Mathematics Subject Classification. Primary 53C18; Secondary 58J35, 35K59. Key words and phrases. Yamabe flow, singular analysis, positive scalar curvature. The first author is partially supported by the ANR grant ANR-17-CE40-0034: CCEM and ANR-18-CE40-0012: RAGE and he thanks the Centre Henri Lebesgue ANR-11-LABX-0020-01 for creating an attractive mathematical environment.

PY - 2023

Y1 - 2023

N2 - In this work, we study the convergence of the normalized Yamabe flow with positive Yamabe constant on a class of pseudo-manifolds that includes stratified spaces with iterated cone-edge metrics. We establish convergence under a low-energy condition. We also prove a concentration-compactness dichotomy, and investigate what the alternatives to convergence are. We end by investigating a non-convergent example due to Viaclovsky in more detail.

AB - In this work, we study the convergence of the normalized Yamabe flow with positive Yamabe constant on a class of pseudo-manifolds that includes stratified spaces with iterated cone-edge metrics. We establish convergence under a low-energy condition. We also prove a concentration-compactness dichotomy, and investigate what the alternatives to convergence are. We end by investigating a non-convergent example due to Viaclovsky in more detail.

KW - positive scalar curvature

KW - singular analysis

KW - Yamabe flow

UR - http://www.scopus.com/inward/record.url?scp=85180520574&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2106.01799

DO - 10.48550/arXiv.2106.01799

M3 - Article

AN - SCOPUS:85180520574

VL - 75

SP - 561

EP - 615

JO - Tohoku Mathematical Journal

JF - Tohoku Mathematical Journal

SN - 0040-8735

IS - 4

ER -