Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 137-158 |
Seitenumfang | 22 |
Fachzeitschrift | Calculus of Variations and Partial Differential Equations |
Jahrgang | 5 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - Juni 1997 |
Extern publiziert | Ja |
Abstract
We study the asymptotics for the eigenvalues and eigenfunctions and the Green function for sequences of Riemannian metrics that converge to a smooth compact limit of different topology in a controlled manner, as encountered in surgery constructions. A model case is the Bergman metric on a family of degenerating Riemann surfaces with reducible limit.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Calculus of Variations and Partial Differential Equations, Jahrgang 5, Nr. 2, 06.1997, S. 137-158.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Convergence of eigenvalues and Green functions under surgery type degeneration of Riemannian manifolds
AU - Habermann, Lutz
AU - Jost, Jürgen
PY - 1997/6
Y1 - 1997/6
N2 - We study the asymptotics for the eigenvalues and eigenfunctions and the Green function for sequences of Riemannian metrics that converge to a smooth compact limit of different topology in a controlled manner, as encountered in surgery constructions. A model case is the Bergman metric on a family of degenerating Riemann surfaces with reducible limit.
AB - We study the asymptotics for the eigenvalues and eigenfunctions and the Green function for sequences of Riemannian metrics that converge to a smooth compact limit of different topology in a controlled manner, as encountered in surgery constructions. A model case is the Bergman metric on a family of degenerating Riemann surfaces with reducible limit.
UR - http://www.scopus.com/inward/record.url?scp=3142521885&partnerID=8YFLogxK
U2 - 10.1007/s005260050063
DO - 10.1007/s005260050063
M3 - Article
AN - SCOPUS:3142521885
VL - 5
SP - 137
EP - 158
JO - Calculus of Variations and Partial Differential Equations
JF - Calculus of Variations and Partial Differential Equations
SN - 0944-2669
IS - 2
ER -