Contributions to data analytics techniques with applications in forecasting, visualization and decision support

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • Dennis Eilers

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum politicarum
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades2 Nov. 2018
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2018

Abstract

This cumulative dissertation summarizes and critically discusses seven peer-reviewed publications where I was involved as a co-author. All publications contribute to data analytics techniques. The dissertation consists of four main sections. (1) Machine Leaning in Finance: In this section a Decision Support Algorithm based in Reinforcement Learning is introduced which filters rule-based trading decisions. We contribute to the literature by describing the implementation of the algorithm. We also provide empirical evidence of financial market anomalies. (2) Mining Customer Reviews: Opinions from customers about certain products are more and more expressed on social media platforms. Here we provide the first study which analyses YouTube comments as a data source for an aspect-based Sentiment Analysis. We also contribute to the literature by proposing a filtering method based on Google Trends which sorts product aspects according to their relevance for the customers. (3) Forecasting Resale Prices of Used Cars: In this section we show how to efficiently forecast resale prices of used cars with Artificial Neural Networks. We provide lessons learned about long-term forecasts. We also provide insights in the importance of certain independent factors which determine the resale price. (4) Visual Model Evaluation: The research in this section is mainly driven by the question of how to better incorporate human domain knowledge in data science. We develop a visualization technique based on heat maps which provides a more intuitive view on errors of a machine learning model. The visualization technique allows domain experts to discuss the results of machine learning models with data science experts on the same level of complexity.

Zitieren

Contributions to data analytics techniques with applications in forecasting, visualization and decision support. / Eilers, Dennis.
Hannover, 2018. 96 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Eilers, D 2018, 'Contributions to data analytics techniques with applications in forecasting, visualization and decision support', Doctor rerum politicarum, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/4006
Download
@phdthesis{d2d8af8ca6b6436d954ee0ffc58d9a10,
title = "Contributions to data analytics techniques with applications in forecasting, visualization and decision support",
abstract = "This cumulative dissertation summarizes and critically discusses seven peer-reviewed publications where I was involved as a co-author. All publications contribute to data analytics techniques. The dissertation consists of four main sections. (1) Machine Leaning in Finance: In this section a Decision Support Algorithm based in Reinforcement Learning is introduced which filters rule-based trading decisions. We contribute to the literature by describing the implementation of the algorithm. We also provide empirical evidence of financial market anomalies. (2) Mining Customer Reviews: Opinions from customers about certain products are more and more expressed on social media platforms. Here we provide the first study which analyses YouTube comments as a data source for an aspect-based Sentiment Analysis. We also contribute to the literature by proposing a filtering method based on Google Trends which sorts product aspects according to their relevance for the customers. (3) Forecasting Resale Prices of Used Cars: In this section we show how to efficiently forecast resale prices of used cars with Artificial Neural Networks. We provide lessons learned about long-term forecasts. We also provide insights in the importance of certain independent factors which determine the resale price. (4) Visual Model Evaluation: The research in this section is mainly driven by the question of how to better incorporate human domain knowledge in data science. We develop a visualization technique based on heat maps which provides a more intuitive view on errors of a machine learning model. The visualization technique allows domain experts to discuss the results of machine learning models with data science experts on the same level of complexity. ",
author = "Dennis Eilers",
note = "Doctoral thesis",
year = "2018",
doi = "10.15488/4006",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Contributions to data analytics techniques with applications in forecasting, visualization and decision support

AU - Eilers, Dennis

N1 - Doctoral thesis

PY - 2018

Y1 - 2018

N2 - This cumulative dissertation summarizes and critically discusses seven peer-reviewed publications where I was involved as a co-author. All publications contribute to data analytics techniques. The dissertation consists of four main sections. (1) Machine Leaning in Finance: In this section a Decision Support Algorithm based in Reinforcement Learning is introduced which filters rule-based trading decisions. We contribute to the literature by describing the implementation of the algorithm. We also provide empirical evidence of financial market anomalies. (2) Mining Customer Reviews: Opinions from customers about certain products are more and more expressed on social media platforms. Here we provide the first study which analyses YouTube comments as a data source for an aspect-based Sentiment Analysis. We also contribute to the literature by proposing a filtering method based on Google Trends which sorts product aspects according to their relevance for the customers. (3) Forecasting Resale Prices of Used Cars: In this section we show how to efficiently forecast resale prices of used cars with Artificial Neural Networks. We provide lessons learned about long-term forecasts. We also provide insights in the importance of certain independent factors which determine the resale price. (4) Visual Model Evaluation: The research in this section is mainly driven by the question of how to better incorporate human domain knowledge in data science. We develop a visualization technique based on heat maps which provides a more intuitive view on errors of a machine learning model. The visualization technique allows domain experts to discuss the results of machine learning models with data science experts on the same level of complexity.

AB - This cumulative dissertation summarizes and critically discusses seven peer-reviewed publications where I was involved as a co-author. All publications contribute to data analytics techniques. The dissertation consists of four main sections. (1) Machine Leaning in Finance: In this section a Decision Support Algorithm based in Reinforcement Learning is introduced which filters rule-based trading decisions. We contribute to the literature by describing the implementation of the algorithm. We also provide empirical evidence of financial market anomalies. (2) Mining Customer Reviews: Opinions from customers about certain products are more and more expressed on social media platforms. Here we provide the first study which analyses YouTube comments as a data source for an aspect-based Sentiment Analysis. We also contribute to the literature by proposing a filtering method based on Google Trends which sorts product aspects according to their relevance for the customers. (3) Forecasting Resale Prices of Used Cars: In this section we show how to efficiently forecast resale prices of used cars with Artificial Neural Networks. We provide lessons learned about long-term forecasts. We also provide insights in the importance of certain independent factors which determine the resale price. (4) Visual Model Evaluation: The research in this section is mainly driven by the question of how to better incorporate human domain knowledge in data science. We develop a visualization technique based on heat maps which provides a more intuitive view on errors of a machine learning model. The visualization technique allows domain experts to discuss the results of machine learning models with data science experts on the same level of complexity.

U2 - 10.15488/4006

DO - 10.15488/4006

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren