Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 767-776 |
Seitenumfang | 10 |
Fachzeitschrift | Biology and fertility of soils |
Jahrgang | 55 |
Ausgabenummer | 8 |
Frühes Online-Datum | 31 Juli 2019 |
Publikationsstatus | Veröffentlicht - Nov. 2019 |
Abstract
Microbial residues are key components of stable soil organic C (SOC). However, the accumulation patterns of fungal and bacterial residues across climate regions are largely unknown, especially in paddy soils. In this study, the amounts of microbial-derived amino sugars (AS) with their constituents, glucosamine (GlcN), galactosamine (GalN), and muramic acid (MurN, a biomarker of bacterial residues) were quantified in paddy soils, which were collected from mid-temperate, warm-temperate, subtropical, and tropical climate regions across eastern China. The contents of total AS and fungal-derived GlcN (F-GlcN, a biomarker of fungal residues) were lowest in the warm-temperate region, but not significantly different among the other three climate regions. The MurN content and its contribution to SOC accumulation were higher in the warmer and wetter regions (subtropic and tropic) than in the cooler and drier ones (mid-temperate and warm-temperate). Consequently, the ratio of F-GlcN to MurN was lower in the warmer and wetter regions (8.5–15.4) than in the cooler and drier ones (12.8–28.8). These results illustrate that the bacteria participating in SOC transformation and stabilization in paddy soils exerted more prominent activities in the warmer and wetter regions than in the cooler and drier regions. Structure equation models emphasize that the contrasting patterns of fungal and bacterial residues’ contribution to SOC accumulation in paddy ecosystems along the latitudinal gradient were mainly attributed to their different responses to the climate factors of temperature and precipitation.
ASJC Scopus Sachgebiete
- Immunologie und Mikrobiologie (insg.)
- Mikrobiologie
- Agrar- und Biowissenschaften (insg.)
- Agronomie und Nutzpflanzenwissenschaften
- Agrar- und Biowissenschaften (insg.)
- Bodenkunde
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Biology and fertility of soils, Jahrgang 55, Nr. 8, 11.2019, S. 767-776.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Contrasting contribution of fungal and bacterial residues to organic carbon accumulation in paddy soils across eastern China
AU - Xia, Yinhang
AU - Chen, Xiangbi
AU - Hu, Yajun
AU - Zheng, Shengmeng
AU - Ning, Zhao
AU - Guggenberger, Georg
AU - He, Hongbo
AU - Wu, Jinshui
AU - Su, Yirong
N1 - Funding information: This study was supported by the National Natural Science Foundation of China (41671298, 41877035), Natural Science Foundation of Guangxi (2018GXNSFAA138020), and Open Foundation of ISA, CAS (ISA2017302).
PY - 2019/11
Y1 - 2019/11
N2 - Microbial residues are key components of stable soil organic C (SOC). However, the accumulation patterns of fungal and bacterial residues across climate regions are largely unknown, especially in paddy soils. In this study, the amounts of microbial-derived amino sugars (AS) with their constituents, glucosamine (GlcN), galactosamine (GalN), and muramic acid (MurN, a biomarker of bacterial residues) were quantified in paddy soils, which were collected from mid-temperate, warm-temperate, subtropical, and tropical climate regions across eastern China. The contents of total AS and fungal-derived GlcN (F-GlcN, a biomarker of fungal residues) were lowest in the warm-temperate region, but not significantly different among the other three climate regions. The MurN content and its contribution to SOC accumulation were higher in the warmer and wetter regions (subtropic and tropic) than in the cooler and drier ones (mid-temperate and warm-temperate). Consequently, the ratio of F-GlcN to MurN was lower in the warmer and wetter regions (8.5–15.4) than in the cooler and drier ones (12.8–28.8). These results illustrate that the bacteria participating in SOC transformation and stabilization in paddy soils exerted more prominent activities in the warmer and wetter regions than in the cooler and drier regions. Structure equation models emphasize that the contrasting patterns of fungal and bacterial residues’ contribution to SOC accumulation in paddy ecosystems along the latitudinal gradient were mainly attributed to their different responses to the climate factors of temperature and precipitation.
AB - Microbial residues are key components of stable soil organic C (SOC). However, the accumulation patterns of fungal and bacterial residues across climate regions are largely unknown, especially in paddy soils. In this study, the amounts of microbial-derived amino sugars (AS) with their constituents, glucosamine (GlcN), galactosamine (GalN), and muramic acid (MurN, a biomarker of bacterial residues) were quantified in paddy soils, which were collected from mid-temperate, warm-temperate, subtropical, and tropical climate regions across eastern China. The contents of total AS and fungal-derived GlcN (F-GlcN, a biomarker of fungal residues) were lowest in the warm-temperate region, but not significantly different among the other three climate regions. The MurN content and its contribution to SOC accumulation were higher in the warmer and wetter regions (subtropic and tropic) than in the cooler and drier ones (mid-temperate and warm-temperate). Consequently, the ratio of F-GlcN to MurN was lower in the warmer and wetter regions (8.5–15.4) than in the cooler and drier ones (12.8–28.8). These results illustrate that the bacteria participating in SOC transformation and stabilization in paddy soils exerted more prominent activities in the warmer and wetter regions than in the cooler and drier regions. Structure equation models emphasize that the contrasting patterns of fungal and bacterial residues’ contribution to SOC accumulation in paddy ecosystems along the latitudinal gradient were mainly attributed to their different responses to the climate factors of temperature and precipitation.
KW - Amino sugars
KW - Bacterial residues
KW - Climate region
KW - Fungal residues
KW - Paddy soil
KW - Soil organic carbon
UR - http://www.scopus.com/inward/record.url?scp=85069973045&partnerID=8YFLogxK
U2 - 10.1007/s00374-019-01390-7
DO - 10.1007/s00374-019-01390-7
M3 - Article
AN - SCOPUS:85069973045
VL - 55
SP - 767
EP - 776
JO - Biology and fertility of soils
JF - Biology and fertility of soils
SN - 0178-2762
IS - 8
ER -