Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 317-333 |
Seitenumfang | 17 |
Fachzeitschrift | Mathematische Annalen |
Jahrgang | 377 |
Ausgabenummer | 1-2 |
Publikationsstatus | Veröffentlicht - Juni 2020 |
Extern publiziert | Ja |
Abstract
It is known that there is a class of semilinear parabolic equations for which interior gradient blow-up (in finite time) occurs for some solutions. We construct a continuation of such solutions after gradient blow-up. This continuation is global in time and we give an example when it never becomes a classical solution again.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematische Annalen, Jahrgang 377, Nr. 1-2, 06.2020, S. 317-333.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Continuation beyond interior gradient blow-up in a semilinear parabolic equation
AU - Fila, Marek
AU - Lankeit, Johannes
N1 - Funding Information: The first author was supported in part by the Slovak Research and Development Agency under the contract No. APVV-14-0378 and by the VEGA Grant 1/0347/18. Publisher Copyright: © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2020/6
Y1 - 2020/6
N2 - It is known that there is a class of semilinear parabolic equations for which interior gradient blow-up (in finite time) occurs for some solutions. We construct a continuation of such solutions after gradient blow-up. This continuation is global in time and we give an example when it never becomes a classical solution again.
AB - It is known that there is a class of semilinear parabolic equations for which interior gradient blow-up (in finite time) occurs for some solutions. We construct a continuation of such solutions after gradient blow-up. This continuation is global in time and we give an example when it never becomes a classical solution again.
UR - http://www.scopus.com/inward/record.url?scp=85081343655&partnerID=8YFLogxK
U2 - 10.1007/s00208-019-01827-2
DO - 10.1007/s00208-019-01827-2
M3 - Article
AN - SCOPUS:85081343655
VL - 377
SP - 317
EP - 333
JO - Mathematische Annalen
JF - Mathematische Annalen
SN - 0025-5831
IS - 1-2
ER -