Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 052334 |
Fachzeitschrift | Physical Review A |
Jahrgang | 95 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - 17 Mai 2017 |
Extern publiziert | Ja |
Abstract
We describe schemes of quantum computation with magic states on qubits for which contextuality and negativity of the Wigner function are necessary resources possessed by the magic states. These schemes satisfy a constraint. Namely, the non-negativity of Wigner functions must be preserved under all available measurement operations. Furthermore, we identify stringent consistency conditions on such computational schemes, revealing the general structure by which negativity of Wigner functions, hardness of classical simulation of the computation, and contextuality are connected.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical Review A, Jahrgang 95, Nr. 5, 052334, 17.05.2017.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Contextuality and Wigner-function negativity in qubit quantum computation
AU - Raussendorf, Robert
AU - Browne, Dan E.
AU - Delfosse, Nicolas
AU - Okay, Cihan
AU - Bermejo-Vega, Juan
N1 - Funding Information: This work has been funded by NSERC (N.D., C.O., and R.R.), SIQS (J.B.V.), AQuS (J.B.V.), Cifar (N.D. and R.R.), and IARPA (R.R.). R.R. acknowledges support from a fellowship from the Cifar (Canadian Institute for Advanced Research) Quantum Information Program.
PY - 2017/5/17
Y1 - 2017/5/17
N2 - We describe schemes of quantum computation with magic states on qubits for which contextuality and negativity of the Wigner function are necessary resources possessed by the magic states. These schemes satisfy a constraint. Namely, the non-negativity of Wigner functions must be preserved under all available measurement operations. Furthermore, we identify stringent consistency conditions on such computational schemes, revealing the general structure by which negativity of Wigner functions, hardness of classical simulation of the computation, and contextuality are connected.
AB - We describe schemes of quantum computation with magic states on qubits for which contextuality and negativity of the Wigner function are necessary resources possessed by the magic states. These schemes satisfy a constraint. Namely, the non-negativity of Wigner functions must be preserved under all available measurement operations. Furthermore, we identify stringent consistency conditions on such computational schemes, revealing the general structure by which negativity of Wigner functions, hardness of classical simulation of the computation, and contextuality are connected.
UR - http://www.scopus.com/inward/record.url?scp=85026893422&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.95.052334
DO - 10.1103/PhysRevA.95.052334
M3 - Article
AN - SCOPUS:85026893422
VL - 95
JO - Physical Review A
JF - Physical Review A
SN - 2469-9926
IS - 5
M1 - 052334
ER -