Contextuality and Wigner-function negativity in qubit quantum computation

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • University of British Columbia
  • University College London (UCL)
  • Universite de Sherbrooke
  • California Institute of Technology (Caltech)
  • University of California at Riverside
  • Max-Planck-Institut für Quantenoptik (MPQ)
  • Freie Universität Berlin (FU Berlin)
  • The University of Western Ontario
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer052334
FachzeitschriftPhysical Review A
Jahrgang95
Ausgabenummer5
PublikationsstatusVeröffentlicht - 17 Mai 2017
Extern publiziertJa

Abstract

We describe schemes of quantum computation with magic states on qubits for which contextuality and negativity of the Wigner function are necessary resources possessed by the magic states. These schemes satisfy a constraint. Namely, the non-negativity of Wigner functions must be preserved under all available measurement operations. Furthermore, we identify stringent consistency conditions on such computational schemes, revealing the general structure by which negativity of Wigner functions, hardness of classical simulation of the computation, and contextuality are connected.

ASJC Scopus Sachgebiete

Zitieren

Contextuality and Wigner-function negativity in qubit quantum computation. / Raussendorf, Robert; Browne, Dan E.; Delfosse, Nicolas et al.
in: Physical Review A, Jahrgang 95, Nr. 5, 052334, 17.05.2017.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Raussendorf R, Browne DE, Delfosse N, Okay C, Bermejo-Vega J. Contextuality and Wigner-function negativity in qubit quantum computation. Physical Review A. 2017 Mai 17;95(5):052334. doi: 10.1103/PhysRevA.95.052334, 10.48550/arXiv.1511.08506
Raussendorf, Robert ; Browne, Dan E. ; Delfosse, Nicolas et al. / Contextuality and Wigner-function negativity in qubit quantum computation. in: Physical Review A. 2017 ; Jahrgang 95, Nr. 5.
Download
@article{a5dc15dc76dd474e94dbe4e023796e5d,
title = "Contextuality and Wigner-function negativity in qubit quantum computation",
abstract = "We describe schemes of quantum computation with magic states on qubits for which contextuality and negativity of the Wigner function are necessary resources possessed by the magic states. These schemes satisfy a constraint. Namely, the non-negativity of Wigner functions must be preserved under all available measurement operations. Furthermore, we identify stringent consistency conditions on such computational schemes, revealing the general structure by which negativity of Wigner functions, hardness of classical simulation of the computation, and contextuality are connected.",
author = "Robert Raussendorf and Browne, {Dan E.} and Nicolas Delfosse and Cihan Okay and Juan Bermejo-Vega",
note = "Funding Information: This work has been funded by NSERC (N.D., C.O., and R.R.), SIQS (J.B.V.), AQuS (J.B.V.), Cifar (N.D. and R.R.), and IARPA (R.R.). R.R. acknowledges support from a fellowship from the Cifar (Canadian Institute for Advanced Research) Quantum Information Program. ",
year = "2017",
month = may,
day = "17",
doi = "10.1103/PhysRevA.95.052334",
language = "English",
volume = "95",
journal = "Physical Review A",
issn = "2469-9926",
publisher = "American Physical Society",
number = "5",

}

Download

TY - JOUR

T1 - Contextuality and Wigner-function negativity in qubit quantum computation

AU - Raussendorf, Robert

AU - Browne, Dan E.

AU - Delfosse, Nicolas

AU - Okay, Cihan

AU - Bermejo-Vega, Juan

N1 - Funding Information: This work has been funded by NSERC (N.D., C.O., and R.R.), SIQS (J.B.V.), AQuS (J.B.V.), Cifar (N.D. and R.R.), and IARPA (R.R.). R.R. acknowledges support from a fellowship from the Cifar (Canadian Institute for Advanced Research) Quantum Information Program.

PY - 2017/5/17

Y1 - 2017/5/17

N2 - We describe schemes of quantum computation with magic states on qubits for which contextuality and negativity of the Wigner function are necessary resources possessed by the magic states. These schemes satisfy a constraint. Namely, the non-negativity of Wigner functions must be preserved under all available measurement operations. Furthermore, we identify stringent consistency conditions on such computational schemes, revealing the general structure by which negativity of Wigner functions, hardness of classical simulation of the computation, and contextuality are connected.

AB - We describe schemes of quantum computation with magic states on qubits for which contextuality and negativity of the Wigner function are necessary resources possessed by the magic states. These schemes satisfy a constraint. Namely, the non-negativity of Wigner functions must be preserved under all available measurement operations. Furthermore, we identify stringent consistency conditions on such computational schemes, revealing the general structure by which negativity of Wigner functions, hardness of classical simulation of the computation, and contextuality are connected.

UR - http://www.scopus.com/inward/record.url?scp=85026893422&partnerID=8YFLogxK

U2 - 10.1103/PhysRevA.95.052334

DO - 10.1103/PhysRevA.95.052334

M3 - Article

AN - SCOPUS:85026893422

VL - 95

JO - Physical Review A

JF - Physical Review A

SN - 2469-9926

IS - 5

M1 - 052334

ER -

Von denselben Autoren