Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 354-371 |
Seitenumfang | 18 |
Fachzeitschrift | ISPRS Journal of Photogrammetry and Remote Sensing |
Jahrgang | 128 |
Frühes Online-Datum | 26 Apr. 2017 |
Publikationsstatus | Veröffentlicht - Juni 2017 |
Abstract
Classification of point clouds is needed as a first step in the extraction of various types of geo-information from point clouds. We present a new approach to contextual classification of segmented airborne laser scanning data. Potential advantages of segment-based classification are easily offset by segmentation errors. We combine different point cloud segmentation methods to minimise both under- and over-segmentation. We propose a contextual segment-based classification using a Conditional Random Field. Segment adjacencies are represented by edges in the graphical model and characterised by a range of features of points along the segment borders. A mix of small and large segments allows the interaction between nearby and distant points. Results of the segment-based classification are compared to results of a point-based CRF classification. Whereas only a small advantage of the segment-based classification is observed for the ISPRS Vaihingen dataset with 4–7 points/m2, the percentage of correctly classified points in a 30 points/m2 dataset of Rotterdam amounts to 91.0% for the segment-based classification vs. 82.8% for the point-based classification.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
- Ingenieurwesen (insg.)
- Ingenieurwesen (sonstige)
- Informatik (insg.)
- Angewandte Informatik
- Erdkunde und Planetologie (insg.)
- Computer in den Geowissenschaften
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: ISPRS Journal of Photogrammetry and Remote Sensing, Jahrgang 128, 06.2017, S. 354-371.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Contextual segment-based classification of airborne laser scanner data
AU - Vosselman, George
AU - Coenen, Maximilian
AU - Rottensteiner, Franz
N1 - Publisher Copyright: © 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Copyright: Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017/6
Y1 - 2017/6
N2 - Classification of point clouds is needed as a first step in the extraction of various types of geo-information from point clouds. We present a new approach to contextual classification of segmented airborne laser scanning data. Potential advantages of segment-based classification are easily offset by segmentation errors. We combine different point cloud segmentation methods to minimise both under- and over-segmentation. We propose a contextual segment-based classification using a Conditional Random Field. Segment adjacencies are represented by edges in the graphical model and characterised by a range of features of points along the segment borders. A mix of small and large segments allows the interaction between nearby and distant points. Results of the segment-based classification are compared to results of a point-based CRF classification. Whereas only a small advantage of the segment-based classification is observed for the ISPRS Vaihingen dataset with 4–7 points/m2, the percentage of correctly classified points in a 30 points/m2 dataset of Rotterdam amounts to 91.0% for the segment-based classification vs. 82.8% for the point-based classification.
AB - Classification of point clouds is needed as a first step in the extraction of various types of geo-information from point clouds. We present a new approach to contextual classification of segmented airborne laser scanning data. Potential advantages of segment-based classification are easily offset by segmentation errors. We combine different point cloud segmentation methods to minimise both under- and over-segmentation. We propose a contextual segment-based classification using a Conditional Random Field. Segment adjacencies are represented by edges in the graphical model and characterised by a range of features of points along the segment borders. A mix of small and large segments allows the interaction between nearby and distant points. Results of the segment-based classification are compared to results of a point-based CRF classification. Whereas only a small advantage of the segment-based classification is observed for the ISPRS Vaihingen dataset with 4–7 points/m2, the percentage of correctly classified points in a 30 points/m2 dataset of Rotterdam amounts to 91.0% for the segment-based classification vs. 82.8% for the point-based classification.
KW - Classification
KW - CRF
KW - Point cloud
KW - Segmentation
UR - http://www.scopus.com/inward/record.url?scp=85018625462&partnerID=8YFLogxK
U2 - 10.1016/j.isprsjprs.2017.03.010
DO - 10.1016/j.isprsjprs.2017.03.010
M3 - Article
AN - SCOPUS:85018625462
VL - 128
SP - 354
EP - 371
JO - ISPRS Journal of Photogrammetry and Remote Sensing
JF - ISPRS Journal of Photogrammetry and Remote Sensing
SN - 0924-2716
ER -