Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 130 |
Seitenumfang | 10 |
Fachzeitschrift | Journal of Manufacturing and Materials Processing |
Jahrgang | 7 |
Ausgabenummer | 4 |
Frühes Online-Datum | 13 Juli 2023 |
Publikationsstatus | Veröffentlicht - Aug. 2023 |
Abstract
The Collaborative Research Center 1153 is investigating a novel process chain for manufacturing high-performance hybrid components. The combination of aluminum and steel can reduce the weight of components and lead to lower fuel consumption. During the welding of aluminum and steel, a brittle intermetallic phase is formed that reduces the service life of the component. After welding, the workpiece is heated inhomogeneously and hot-formed in a cross-wedge rolling process. Since the intermetallic phase grows depending on the temperature during hot forming, temperature control is of great importance. In this paper, the possibility of process-integrated contact temperature measurement with thin-film sensors is investigated. For this purpose, the initial temperature distribution after induction heating of the workpiece is determined. Subsequently, cross-wedge rolling is carried out, and the data of the thin-film sensors are compared to the temperature measurements after heating. It is shown that thin-film sensors inserted into the tool are capable of measuring surface temperatures even at a contact time of 0.041 s. The new process monitoring of the temperature makes it possible to develop a better understanding of the process as well as to further optimize the temperature distribution. In the long term, knowledge of the temperatures in the different materials also makes it possible to derive quality characteristics as well as insights into the causes of possible process errors (e.g., fracture of the joining zone).
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Werkstoffmechanik
- Ingenieurwesen (insg.)
- Maschinenbau
- Ingenieurwesen (insg.)
- Wirtschaftsingenieurwesen und Fertigungstechnik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Manufacturing and Materials Processing, Jahrgang 7, Nr. 4, 130, 08.2023.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Contact Temperature Measurements on Hybrid Aluminum–Steel Workpieces in a Cross-Wedge Rolling Process
AU - Merkel, Paulina
AU - Kruse, Jens
AU - Kriwall, Mareile
AU - Behrens, Bernd Arno
AU - Stonis, Malte
N1 - Funding Information: This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—CRC 1153, subproject B1—252662854.
PY - 2023/8
Y1 - 2023/8
N2 - The Collaborative Research Center 1153 is investigating a novel process chain for manufacturing high-performance hybrid components. The combination of aluminum and steel can reduce the weight of components and lead to lower fuel consumption. During the welding of aluminum and steel, a brittle intermetallic phase is formed that reduces the service life of the component. After welding, the workpiece is heated inhomogeneously and hot-formed in a cross-wedge rolling process. Since the intermetallic phase grows depending on the temperature during hot forming, temperature control is of great importance. In this paper, the possibility of process-integrated contact temperature measurement with thin-film sensors is investigated. For this purpose, the initial temperature distribution after induction heating of the workpiece is determined. Subsequently, cross-wedge rolling is carried out, and the data of the thin-film sensors are compared to the temperature measurements after heating. It is shown that thin-film sensors inserted into the tool are capable of measuring surface temperatures even at a contact time of 0.041 s. The new process monitoring of the temperature makes it possible to develop a better understanding of the process as well as to further optimize the temperature distribution. In the long term, knowledge of the temperatures in the different materials also makes it possible to derive quality characteristics as well as insights into the causes of possible process errors (e.g., fracture of the joining zone).
AB - The Collaborative Research Center 1153 is investigating a novel process chain for manufacturing high-performance hybrid components. The combination of aluminum and steel can reduce the weight of components and lead to lower fuel consumption. During the welding of aluminum and steel, a brittle intermetallic phase is formed that reduces the service life of the component. After welding, the workpiece is heated inhomogeneously and hot-formed in a cross-wedge rolling process. Since the intermetallic phase grows depending on the temperature during hot forming, temperature control is of great importance. In this paper, the possibility of process-integrated contact temperature measurement with thin-film sensors is investigated. For this purpose, the initial temperature distribution after induction heating of the workpiece is determined. Subsequently, cross-wedge rolling is carried out, and the data of the thin-film sensors are compared to the temperature measurements after heating. It is shown that thin-film sensors inserted into the tool are capable of measuring surface temperatures even at a contact time of 0.041 s. The new process monitoring of the temperature makes it possible to develop a better understanding of the process as well as to further optimize the temperature distribution. In the long term, knowledge of the temperatures in the different materials also makes it possible to derive quality characteristics as well as insights into the causes of possible process errors (e.g., fracture of the joining zone).
KW - aluminum
KW - cross-wedge rolling
KW - hybrid components
KW - temperature monitoring
KW - thin-film sensors
UR - http://www.scopus.com/inward/record.url?scp=85169073369&partnerID=8YFLogxK
U2 - 10.3390/jmmp7040130
DO - 10.3390/jmmp7040130
M3 - Article
AN - SCOPUS:85169073369
VL - 7
JO - Journal of Manufacturing and Materials Processing
JF - Journal of Manufacturing and Materials Processing
IS - 4
M1 - 130
ER -