Construction de triplets spectraux à partir de modules de Fredholm

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Elmar Schrohe
  • Markus Walze
  • Jan Martin Warzecha

Externe Organisationen

  • Universität Potsdam
  • Institut des Hautes Etudes Scientifiques
  • Johannes Gutenberg-Universität Mainz
Forschungs-netzwerk anzeigen

Details

Titel in ÜbersetzungConstruction of spectral triples starting from Fredholm modules
OriginalspracheFranzösisch
Seiten (von - bis)1195-1199
Seitenumfang5
FachzeitschriftComptes Rendus de l'Academie des Sciences - Series I: Mathematics
Jahrgang326
Ausgabenummer10
PublikationsstatusVeröffentlicht - Mai 1998
Extern publiziertJa

Abstract

Let (A, H, F) be a p-summable Fredholm module where the algebra A = ℂΓ is generated by a discrete group of unitaries in L(H), which is of polynomial growth r. Then we construct a spectral triple (A, H, D) with F = sign D which is q-summable for each q > p + r + 1. In case (A, H, F) is (p, ∞)-summable we obtain (8, ∞)-summability of (A, H, D) for each q > p + r + 1.

ASJC Scopus Sachgebiete

Zitieren

Construction de triplets spectraux à partir de modules de Fredholm. / Schrohe, Elmar; Walze, Markus; Warzecha, Jan Martin.
in: Comptes Rendus de l'Academie des Sciences - Series I: Mathematics, Jahrgang 326, Nr. 10, 05.1998, S. 1195-1199.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Schrohe E, Walze M, Warzecha JM. Construction de triplets spectraux à partir de modules de Fredholm. Comptes Rendus de l'Academie des Sciences - Series I: Mathematics. 1998 Mai;326(10):1195-1199. doi: 10.1016/S0764-4442(98)80226-7
Schrohe, Elmar ; Walze, Markus ; Warzecha, Jan Martin. / Construction de triplets spectraux à partir de modules de Fredholm. in: Comptes Rendus de l'Academie des Sciences - Series I: Mathematics. 1998 ; Jahrgang 326, Nr. 10. S. 1195-1199.
Download
@article{d2d8d009fc97403a89ad437b80b6eb65,
title = "Construction de triplets spectraux {\`a} partir de modules de Fredholm",
abstract = "Let (A, H, F) be a p-summable Fredholm module where the algebra A = ℂΓ is generated by a discrete group of unitaries in L(H), which is of polynomial growth r. Then we construct a spectral triple (A, H, D) with F = sign D which is q-summable for each q > p + r + 1. In case (A, H, F) is (p, ∞)-summable we obtain (8, ∞)-summability of (A, H, D) for each q > p + r + 1.",
author = "Elmar Schrohe and Markus Walze and Warzecha, {Jan Martin}",
note = "Copyright: Copyright 2018 Elsevier B.V., All rights reserved.",
year = "1998",
month = may,
doi = "10.1016/S0764-4442(98)80226-7",
language = "French",
volume = "326",
pages = "1195--1199",
journal = "Comptes Rendus de l'Academie des Sciences - Series I: Mathematics",
issn = "0764-4442",
publisher = "Elsevier Masson",
number = "10",

}

Download

TY - JOUR

T1 - Construction de triplets spectraux à partir de modules de Fredholm

AU - Schrohe, Elmar

AU - Walze, Markus

AU - Warzecha, Jan Martin

N1 - Copyright: Copyright 2018 Elsevier B.V., All rights reserved.

PY - 1998/5

Y1 - 1998/5

N2 - Let (A, H, F) be a p-summable Fredholm module where the algebra A = ℂΓ is generated by a discrete group of unitaries in L(H), which is of polynomial growth r. Then we construct a spectral triple (A, H, D) with F = sign D which is q-summable for each q > p + r + 1. In case (A, H, F) is (p, ∞)-summable we obtain (8, ∞)-summability of (A, H, D) for each q > p + r + 1.

AB - Let (A, H, F) be a p-summable Fredholm module where the algebra A = ℂΓ is generated by a discrete group of unitaries in L(H), which is of polynomial growth r. Then we construct a spectral triple (A, H, D) with F = sign D which is q-summable for each q > p + r + 1. In case (A, H, F) is (p, ∞)-summable we obtain (8, ∞)-summability of (A, H, D) for each q > p + r + 1.

UR - http://www.scopus.com/inward/record.url?scp=0032066970&partnerID=8YFLogxK

U2 - 10.1016/S0764-4442(98)80226-7

DO - 10.1016/S0764-4442(98)80226-7

M3 - Article

AN - SCOPUS:0032066970

VL - 326

SP - 1195

EP - 1199

JO - Comptes Rendus de l'Academie des Sciences - Series I: Mathematics

JF - Comptes Rendus de l'Academie des Sciences - Series I: Mathematics

SN - 0764-4442

IS - 10

ER -