Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • The LIGO Scientific Collaboration
  • Virgo Collaboration
  • the KAGRA Collaboration
  • K. Danzmann
  • M. Heurs
  • A. Hreibi
  • J. Lehmann
  • H. Vahlbruch
  • D. Wilken
  • B. Willke
  • D. S. Wu
  • C. Chatterjee
  • C. Affeldt
  • F. Bergamin
  • A. Bisht
  • N. Bode
  • P. Booker
  • M. Brinkmann
  • N. Gohlke
  • A. Heidt
  • J. Heinze
  • S. Hochheim
  • W. Kastaun
  • R. Kirchhoff
  • P. Koch
  • N. Koper
  • V. Kringel
  • N. V. Krishnendu
  • G. Kuehn
  • S. Leavey
  • J. Liu
  • J. D. Lough
  • M. Matiushechkina
  • M. Mehmet
  • F. Meylahn
  • N. Mukund
  • S. L. Nadji
  • M. Nery
  • F. Ohme
  • M. Schneewind
  • B. W. Schulte
  • B. F. Schutz
  • J. Venneberg
  • J. von Wrangel
  • M. Weinert
  • F. Wellmann
  • P. Weßels
  • W. Winkler
  • J. Woehler
  • Jonas Junker

Organisationseinheiten

Externe Organisationen

  • University of Western Australia
  • Maastricht University
  • Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
  • Universität Hamburg
  • Cardiff University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer063030
FachzeitschriftPhysical Review D
Jahrgang105
Ausgabenummer6
PublikationsstatusVeröffentlicht - 31 März 2022

Abstract

We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo's third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors. The excess power method optimizes the Fourier Transform coherence time as a function of frequency, to account for the expected signal width due to Doppler modulations. We do not find any evidence of dark photon dark matter with a mass between \(m_{\rm A} \sim 10^{-14}-10^{-11}\) eV/\(c^2\), which corresponds to frequencies between 10-2000 Hz, and therefore provide upper limits on the square of the minimum coupling of dark photons to baryons, i.e. \(U(1)_{\rm B}\) dark matter. For the cross-correlation method, the best median constraint on the squared coupling is \(\sim1.31\times10^{-47}\) at \(m_{\rm A}\sim4.2\times10^{-13}\) eV/\(c^2\); for the other analysis, the best constraint is \(\sim 1.2\times 10^{-47}\) at \(m_{\rm A}\sim 5.7\times 10^{-13}\) eV/\(c^2\). These limits improve upon those obtained in direct dark matter detection experiments by a factor of \(\sim100\) for \(m_{\rm A}\sim [2-4]\times 10^{-13}\) eV/\(c^2\).

ASJC Scopus Sachgebiete

Zitieren

Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. / The LIGO Scientific Collaboration; Virgo Collaboration; the KAGRA Collaboration et al.
in: Physical Review D, Jahrgang 105, Nr. 6, 063030, 31.03.2022.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

The LIGO Scientific Collaboration, Virgo Collaboration, the KAGRA Collaboration, Danzmann, K, Heurs, M, Hreibi, A, Lehmann, J, Vahlbruch, H, Wilken, D, Willke, B, Wu, DS, Chatterjee, C, Affeldt, C, Bergamin, F, Bisht, A, Bode, N, Booker, P, Brinkmann, M, Gohlke, N, Heidt, A, Heinze, J, Hochheim, S, Kastaun, W, Kirchhoff, R, Koch, P, Koper, N, Kringel, V, Krishnendu, NV, Kuehn, G, Leavey, S, Liu, J, Lough, JD, Matiushechkina, M, Mehmet, M, Meylahn, F, Mukund, N, Nadji, SL, Nery, M, Ohme, F, Schneewind, M, Schulte, BW, Schutz, BF, Venneberg, J, von Wrangel, J, Weinert, M, Wellmann, F, Weßels, P, Winkler, W, Woehler, J & Junker, J 2022, 'Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run', Physical Review D, Jg. 105, Nr. 6, 063030. https://doi.org/10.1103/PhysRevD.105.063030
The LIGO Scientific Collaboration, Virgo Collaboration, the KAGRA Collaboration, Danzmann, K., Heurs, M., Hreibi, A., Lehmann, J., Vahlbruch, H., Wilken, D., Willke, B., Wu, D. S., Chatterjee, C., Affeldt, C., Bergamin, F., Bisht, A., Bode, N., Booker, P., Brinkmann, M., Gohlke, N., ... Junker, J. (2022). Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. Physical Review D, 105(6), Artikel 063030. https://doi.org/10.1103/PhysRevD.105.063030
The LIGO Scientific Collaboration, Virgo Collaboration, the KAGRA Collaboration, Danzmann K, Heurs M, Hreibi A et al. Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. Physical Review D. 2022 Mär 31;105(6):063030. doi: 10.1103/PhysRevD.105.063030
The LIGO Scientific Collaboration ; Virgo Collaboration ; the KAGRA Collaboration et al. / Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. in: Physical Review D. 2022 ; Jahrgang 105, Nr. 6.
Download
@article{fc481f9922174c84888c3b0e29215268,
title = "Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run",
abstract = " We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo's third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors. The excess power method optimizes the Fourier Transform coherence time as a function of frequency, to account for the expected signal width due to Doppler modulations. We do not find any evidence of dark photon dark matter with a mass between \(m_{\rm A} \sim 10^{-14}-10^{-11}\) eV/\(c^2\), which corresponds to frequencies between 10-2000 Hz, and therefore provide upper limits on the square of the minimum coupling of dark photons to baryons, i.e. \(U(1)_{\rm B}\) dark matter. For the cross-correlation method, the best median constraint on the squared coupling is \(\sim1.31\times10^{-47}\) at \(m_{\rm A}\sim4.2\times10^{-13}\) eV/\(c^2\); for the other analysis, the best constraint is \(\sim 1.2\times 10^{-47}\) at \(m_{\rm A}\sim 5.7\times 10^{-13}\) eV/\(c^2\). These limits improve upon those obtained in direct dark matter detection experiments by a factor of \(\sim100\) for \(m_{\rm A}\sim [2-4]\times 10^{-13}\) eV/\(c^2\). ",
keywords = "astro-ph.CO, gr-qc, hep-ph",
author = "{The LIGO Scientific Collaboration} and {The Virgo Collaboration} and {the KAGRA Collaboration} and R. Abbott and Abbott, {T. D.} and F. Acernese and Adya, {V. B.} and S. Bose and Brown, {D. D.} and X. Chen and Y.-B. Chen and Chen, {Y. -R.} and H. Cheng and Choudhary, {R. K.} and S. Danilishin and K. Danzmann and Guo, {H. -K.} and H. Hansen and J. Hennig and M. Heurs and A. Hreibi and H{\"u}bner, {M. T.} and K. Isleif and Lang, {R. N.} and Lee, {H. K.} and Lee, {H. M.} and Lee, {H. W.} and J. Lee and J. Lehmann and J. Li and X. Li and H. L{\"u}ck and A. More and T. Nguyen and L. Richardson and Rose, {C. A.} and S. Roy and Sanders, {J. R.} and P. Schmidt and S. Schmidt and L. Sun and H. Vahlbruch and D. Wilken and B. Willke and Wu, {D. S.} and H. Wu and Kohei Yamamoto and H. Zhang and L. Zhang and Z. Zhou and Zhu, {X. J.} and C. Chatterjee and C. Affeldt and F. Bergamin and A. Bisht and N. Bode and P. Booker and M. Brinkmann and N. Gohlke and A. Heidt and J. Heinze and S. Hochheim and W. Kastaun and R. Kirchhoff and P. Koch and N. Koper and V. Kringel and Krishnendu, {N. V.} and G. Kuehn and S. Leavey and J. Liu and Lough, {J. D.} and M. Matiushechkina and M. Mehmet and F. Meylahn and N. Mukund and Nadji, {S. L.} and M. Nery and F. Ohme and M. Schneewind and Schulte, {B. W.} and Schutz, {B. F.} and J. Venneberg and {von Wrangel}, J. and M. Weinert and F. Wellmann and P. We{\ss}els and W. Winkler and J. Woehler and Jonas Junker",
note = "Publisher Copyright: {\textcopyright} 2022 American Physical Society. All rights reserved.",
year = "2022",
month = mar,
day = "31",
doi = "10.1103/PhysRevD.105.063030",
language = "English",
volume = "105",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Institute of Physics",
number = "6",

}

Download

TY - JOUR

T1 - Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run

AU - The LIGO Scientific Collaboration

AU - The Virgo Collaboration

AU - the KAGRA Collaboration

AU - Abbott, R.

AU - Abbott, T. D.

AU - Acernese, F.

AU - Adya, V. B.

AU - Bose, S.

AU - Brown, D. D.

AU - Chen, X.

AU - Chen, Y.-B.

AU - Chen, Y. -R.

AU - Cheng, H.

AU - Choudhary, R. K.

AU - Danilishin, S.

AU - Danzmann, K.

AU - Guo, H. -K.

AU - Hansen, H.

AU - Hennig, J.

AU - Heurs, M.

AU - Hreibi, A.

AU - Hübner, M. T.

AU - Isleif, K.

AU - Lang, R. N.

AU - Lee, H. K.

AU - Lee, H. M.

AU - Lee, H. W.

AU - Lee, J.

AU - Lehmann, J.

AU - Li, J.

AU - Li, X.

AU - Lück, H.

AU - More, A.

AU - Nguyen, T.

AU - Richardson, L.

AU - Rose, C. A.

AU - Roy, S.

AU - Sanders, J. R.

AU - Schmidt, P.

AU - Schmidt, S.

AU - Sun, L.

AU - Vahlbruch, H.

AU - Wilken, D.

AU - Willke, B.

AU - Wu, D. S.

AU - Wu, H.

AU - Yamamoto, Kohei

AU - Zhang, H.

AU - Zhang, L.

AU - Zhou, Z.

AU - Zhu, X. J.

AU - Chatterjee, C.

AU - Affeldt, C.

AU - Bergamin, F.

AU - Bisht, A.

AU - Bode, N.

AU - Booker, P.

AU - Brinkmann, M.

AU - Gohlke, N.

AU - Heidt, A.

AU - Heinze, J.

AU - Hochheim, S.

AU - Kastaun, W.

AU - Kirchhoff, R.

AU - Koch, P.

AU - Koper, N.

AU - Kringel, V.

AU - Krishnendu, N. V.

AU - Kuehn, G.

AU - Leavey, S.

AU - Liu, J.

AU - Lough, J. D.

AU - Matiushechkina, M.

AU - Mehmet, M.

AU - Meylahn, F.

AU - Mukund, N.

AU - Nadji, S. L.

AU - Nery, M.

AU - Ohme, F.

AU - Schneewind, M.

AU - Schulte, B. W.

AU - Schutz, B. F.

AU - Venneberg, J.

AU - von Wrangel, J.

AU - Weinert, M.

AU - Wellmann, F.

AU - Weßels, P.

AU - Winkler, W.

AU - Woehler, J.

AU - Junker, Jonas

N1 - Publisher Copyright: © 2022 American Physical Society. All rights reserved.

PY - 2022/3/31

Y1 - 2022/3/31

N2 - We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo's third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors. The excess power method optimizes the Fourier Transform coherence time as a function of frequency, to account for the expected signal width due to Doppler modulations. We do not find any evidence of dark photon dark matter with a mass between \(m_{\rm A} \sim 10^{-14}-10^{-11}\) eV/\(c^2\), which corresponds to frequencies between 10-2000 Hz, and therefore provide upper limits on the square of the minimum coupling of dark photons to baryons, i.e. \(U(1)_{\rm B}\) dark matter. For the cross-correlation method, the best median constraint on the squared coupling is \(\sim1.31\times10^{-47}\) at \(m_{\rm A}\sim4.2\times10^{-13}\) eV/\(c^2\); for the other analysis, the best constraint is \(\sim 1.2\times 10^{-47}\) at \(m_{\rm A}\sim 5.7\times 10^{-13}\) eV/\(c^2\). These limits improve upon those obtained in direct dark matter detection experiments by a factor of \(\sim100\) for \(m_{\rm A}\sim [2-4]\times 10^{-13}\) eV/\(c^2\).

AB - We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo's third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors. The excess power method optimizes the Fourier Transform coherence time as a function of frequency, to account for the expected signal width due to Doppler modulations. We do not find any evidence of dark photon dark matter with a mass between \(m_{\rm A} \sim 10^{-14}-10^{-11}\) eV/\(c^2\), which corresponds to frequencies between 10-2000 Hz, and therefore provide upper limits on the square of the minimum coupling of dark photons to baryons, i.e. \(U(1)_{\rm B}\) dark matter. For the cross-correlation method, the best median constraint on the squared coupling is \(\sim1.31\times10^{-47}\) at \(m_{\rm A}\sim4.2\times10^{-13}\) eV/\(c^2\); for the other analysis, the best constraint is \(\sim 1.2\times 10^{-47}\) at \(m_{\rm A}\sim 5.7\times 10^{-13}\) eV/\(c^2\). These limits improve upon those obtained in direct dark matter detection experiments by a factor of \(\sim100\) for \(m_{\rm A}\sim [2-4]\times 10^{-13}\) eV/\(c^2\).

KW - astro-ph.CO

KW - gr-qc

KW - hep-ph

UR - http://www.scopus.com/inward/record.url?scp=85128736654&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.105.063030

DO - 10.1103/PhysRevD.105.063030

M3 - Article

VL - 105

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 6

M1 - 063030

ER -

Von denselben Autoren