Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 063030 |
Fachzeitschrift | Physical Review D |
Jahrgang | 105 |
Ausgabenummer | 6 |
Publikationsstatus | Veröffentlicht - 31 März 2022 |
Abstract
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Kern- und Hochenergiephysik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical Review D, Jahrgang 105, Nr. 6, 063030, 31.03.2022.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run
AU - The LIGO Scientific Collaboration
AU - The Virgo Collaboration
AU - the KAGRA Collaboration
AU - Abbott, R.
AU - Abbott, T. D.
AU - Acernese, F.
AU - Adya, V. B.
AU - Bose, S.
AU - Brown, D. D.
AU - Chen, X.
AU - Chen, Y.-B.
AU - Chen, Y. -R.
AU - Cheng, H.
AU - Choudhary, R. K.
AU - Danilishin, S.
AU - Danzmann, K.
AU - Guo, H. -K.
AU - Hansen, H.
AU - Hennig, J.
AU - Heurs, M.
AU - Hreibi, A.
AU - Hübner, M. T.
AU - Isleif, K.
AU - Lang, R. N.
AU - Lee, H. K.
AU - Lee, H. M.
AU - Lee, H. W.
AU - Lee, J.
AU - Lehmann, J.
AU - Li, J.
AU - Li, X.
AU - Lück, H.
AU - More, A.
AU - Nguyen, T.
AU - Richardson, L.
AU - Rose, C. A.
AU - Roy, S.
AU - Sanders, J. R.
AU - Schmidt, P.
AU - Schmidt, S.
AU - Sun, L.
AU - Vahlbruch, H.
AU - Wilken, D.
AU - Willke, B.
AU - Wu, D. S.
AU - Wu, H.
AU - Yamamoto, Kohei
AU - Zhang, H.
AU - Zhang, L.
AU - Zhou, Z.
AU - Zhu, X. J.
AU - Chatterjee, C.
AU - Affeldt, C.
AU - Bergamin, F.
AU - Bisht, A.
AU - Bode, N.
AU - Booker, P.
AU - Brinkmann, M.
AU - Gohlke, N.
AU - Heidt, A.
AU - Heinze, J.
AU - Hochheim, S.
AU - Kastaun, W.
AU - Kirchhoff, R.
AU - Koch, P.
AU - Koper, N.
AU - Kringel, V.
AU - Krishnendu, N. V.
AU - Kuehn, G.
AU - Leavey, S.
AU - Liu, J.
AU - Lough, J. D.
AU - Matiushechkina, M.
AU - Mehmet, M.
AU - Meylahn, F.
AU - Mukund, N.
AU - Nadji, S. L.
AU - Nery, M.
AU - Ohme, F.
AU - Schneewind, M.
AU - Schulte, B. W.
AU - Schutz, B. F.
AU - Venneberg, J.
AU - von Wrangel, J.
AU - Weinert, M.
AU - Wellmann, F.
AU - Weßels, P.
AU - Winkler, W.
AU - Woehler, J.
AU - Junker, Jonas
N1 - Publisher Copyright: © 2022 American Physical Society. All rights reserved.
PY - 2022/3/31
Y1 - 2022/3/31
N2 - We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo's third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors. The excess power method optimizes the Fourier Transform coherence time as a function of frequency, to account for the expected signal width due to Doppler modulations. We do not find any evidence of dark photon dark matter with a mass between \(m_{\rm A} \sim 10^{-14}-10^{-11}\) eV/\(c^2\), which corresponds to frequencies between 10-2000 Hz, and therefore provide upper limits on the square of the minimum coupling of dark photons to baryons, i.e. \(U(1)_{\rm B}\) dark matter. For the cross-correlation method, the best median constraint on the squared coupling is \(\sim1.31\times10^{-47}\) at \(m_{\rm A}\sim4.2\times10^{-13}\) eV/\(c^2\); for the other analysis, the best constraint is \(\sim 1.2\times 10^{-47}\) at \(m_{\rm A}\sim 5.7\times 10^{-13}\) eV/\(c^2\). These limits improve upon those obtained in direct dark matter detection experiments by a factor of \(\sim100\) for \(m_{\rm A}\sim [2-4]\times 10^{-13}\) eV/\(c^2\).
AB - We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo's third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors. The excess power method optimizes the Fourier Transform coherence time as a function of frequency, to account for the expected signal width due to Doppler modulations. We do not find any evidence of dark photon dark matter with a mass between \(m_{\rm A} \sim 10^{-14}-10^{-11}\) eV/\(c^2\), which corresponds to frequencies between 10-2000 Hz, and therefore provide upper limits on the square of the minimum coupling of dark photons to baryons, i.e. \(U(1)_{\rm B}\) dark matter. For the cross-correlation method, the best median constraint on the squared coupling is \(\sim1.31\times10^{-47}\) at \(m_{\rm A}\sim4.2\times10^{-13}\) eV/\(c^2\); for the other analysis, the best constraint is \(\sim 1.2\times 10^{-47}\) at \(m_{\rm A}\sim 5.7\times 10^{-13}\) eV/\(c^2\). These limits improve upon those obtained in direct dark matter detection experiments by a factor of \(\sim100\) for \(m_{\rm A}\sim [2-4]\times 10^{-13}\) eV/\(c^2\).
KW - astro-ph.CO
KW - gr-qc
KW - hep-ph
UR - http://www.scopus.com/inward/record.url?scp=85128736654&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.105.063030
DO - 10.1103/PhysRevD.105.063030
M3 - Article
VL - 105
JO - Physical Review D
JF - Physical Review D
SN - 2470-0010
IS - 6
M1 - 063030
ER -