Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 383-388 |
Seitenumfang | 6 |
Fachzeitschrift | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives |
Jahrgang | 38 |
Publikationsstatus | Veröffentlicht - 2010 |
Veranstaltung | Joint International Conference on Theory, Data Handling and Modelling in GeoSpatial Information Science - Hong Kong, Hongkong Dauer: 26 Mai 2010 → 28 Mai 2010 |
Abstract
The German Authoritative Topographic Cartographic Information System (ATKIS) stores the height and the 2D position of the objects in a dual system. The digital terrain model (DTM), often acquired by airborne laser scanning (ALS), supplies the height information in a regular grid, whereas 2D vector data are provided in the digital landscape model (DLM). However, an increasing number of applications, such as flood risk modelling, require the combined processing and visualization of these two data sets. Due to different kinds of acquisition, processing, and modelling discrepancies exist between the DTM and DLM and thus a simple integration may lead to semantically incorrect 3D objects. For example, rivers may flow uphill. In this paper we propose an algorithm for the adaptation of 2D river borderlines to ALS data by means of snakes. Besides the two basic energy terms of the snake, the internal and image energy, 3D object knowledge is introduced in the constraint energy in order to guarantee the semantic correctness of the rivers in a combined data set. The image energy is based on ALS intensity and height information and derived products. Additionally, features of rivers in the DTM, such as the flow direction or the river profile, are formulated as constraints in order to fulfil the semantic properties of rivers and stabilize the adaptation process. Furthermore, the known concept of twin snakes exploits the width of the river and also supports the procedure. Some results are given to show the applicability of the algorithm.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Information systems
- Sozialwissenschaften (insg.)
- Geografie, Planung und Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Jahrgang 38, 2010, S. 383-388.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - Constraint energies for the adaptation of 2D river borderlines to airborne laserscanning data using snakes
AU - Goepfert, Jens
AU - Rottensteiner, Franz
AU - Heipke, Christian
AU - Alakese, Y.
AU - Rosenhahn, Bodo
PY - 2010
Y1 - 2010
N2 - The German Authoritative Topographic Cartographic Information System (ATKIS) stores the height and the 2D position of the objects in a dual system. The digital terrain model (DTM), often acquired by airborne laser scanning (ALS), supplies the height information in a regular grid, whereas 2D vector data are provided in the digital landscape model (DLM). However, an increasing number of applications, such as flood risk modelling, require the combined processing and visualization of these two data sets. Due to different kinds of acquisition, processing, and modelling discrepancies exist between the DTM and DLM and thus a simple integration may lead to semantically incorrect 3D objects. For example, rivers may flow uphill. In this paper we propose an algorithm for the adaptation of 2D river borderlines to ALS data by means of snakes. Besides the two basic energy terms of the snake, the internal and image energy, 3D object knowledge is introduced in the constraint energy in order to guarantee the semantic correctness of the rivers in a combined data set. The image energy is based on ALS intensity and height information and derived products. Additionally, features of rivers in the DTM, such as the flow direction or the river profile, are formulated as constraints in order to fulfil the semantic properties of rivers and stabilize the adaptation process. Furthermore, the known concept of twin snakes exploits the width of the river and also supports the procedure. Some results are given to show the applicability of the algorithm.
AB - The German Authoritative Topographic Cartographic Information System (ATKIS) stores the height and the 2D position of the objects in a dual system. The digital terrain model (DTM), often acquired by airborne laser scanning (ALS), supplies the height information in a regular grid, whereas 2D vector data are provided in the digital landscape model (DLM). However, an increasing number of applications, such as flood risk modelling, require the combined processing and visualization of these two data sets. Due to different kinds of acquisition, processing, and modelling discrepancies exist between the DTM and DLM and thus a simple integration may lead to semantically incorrect 3D objects. For example, rivers may flow uphill. In this paper we propose an algorithm for the adaptation of 2D river borderlines to ALS data by means of snakes. Besides the two basic energy terms of the snake, the internal and image energy, 3D object knowledge is introduced in the constraint energy in order to guarantee the semantic correctness of the rivers in a combined data set. The image energy is based on ALS intensity and height information and derived products. Additionally, features of rivers in the DTM, such as the flow direction or the river profile, are formulated as constraints in order to fulfil the semantic properties of rivers and stabilize the adaptation process. Furthermore, the known concept of twin snakes exploits the width of the river and also supports the procedure. Some results are given to show the applicability of the algorithm.
KW - ALS
KW - Consistency
KW - Intensity
KW - River
KW - Snakes
KW - Vector data
UR - http://www.scopus.com/inward/record.url?scp=84923689679&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:84923689679
VL - 38
SP - 383
EP - 388
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
SN - 1682-1750
T2 - Joint International Conference on Theory, Data Handling and Modelling in GeoSpatial Information Science
Y2 - 26 May 2010 through 28 May 2010
ER -