Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 090501 |
Fachzeitschrift | Physical review letters |
Jahrgang | 122 |
Ausgabenummer | 9 |
Publikationsstatus | Veröffentlicht - 4 März 2019 |
Extern publiziert | Ja |
Abstract
We provide the first example of a symmetry protected quantum phase that has universal computational power. This two-dimensional phase is protected by one-dimensional linelike symmetries that can be understood in terms of the local symmetries of a tensor network. These local symmetries imply that every ground state in the phase is a universal resource for measurement-based quantum computation.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical review letters, Jahrgang 122, Nr. 9, 090501, 04.03.2019.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Computationally Universal Phase of Quantum Matter
AU - Raussendorf, Robert
AU - Okay, Cihan
AU - Wang, Dong Sheng
AU - Stephen, David T.
AU - Nautrup, Hendrik Poulsen
N1 - Funding Information: This work is supported by the NSERC (C. O., D.-S. W., D. T. S., R. R.), Cifar (R. R.), the Stewart Blusson Quantum Matter Institute (C. O. and D.-S. W.), ERC Grant WASCOSYS, Grant No. 636201 (D. T. S.), and the Austrian Science Fund FWF within the DK-ALM: W1259-N27 (H. P. N.). D.-S. W. thanks Z. C. Gu for discussions.
PY - 2019/3/4
Y1 - 2019/3/4
N2 - We provide the first example of a symmetry protected quantum phase that has universal computational power. This two-dimensional phase is protected by one-dimensional linelike symmetries that can be understood in terms of the local symmetries of a tensor network. These local symmetries imply that every ground state in the phase is a universal resource for measurement-based quantum computation.
AB - We provide the first example of a symmetry protected quantum phase that has universal computational power. This two-dimensional phase is protected by one-dimensional linelike symmetries that can be understood in terms of the local symmetries of a tensor network. These local symmetries imply that every ground state in the phase is a universal resource for measurement-based quantum computation.
UR - http://www.scopus.com/inward/record.url?scp=85062955055&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1803.00095
DO - 10.48550/arXiv.1803.00095
M3 - Article
C2 - 30932542
AN - SCOPUS:85062955055
VL - 122
JO - Physical review letters
JF - Physical review letters
SN - 0031-9007
IS - 9
M1 - 090501
ER -