Computationally Universal Phase of Quantum Matter

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • University of British Columbia
  • Max-Planck-Institut für Quantenoptik (MPQ)
  • Universität Innsbruck
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer090501
FachzeitschriftPhysical review letters
Jahrgang122
Ausgabenummer9
PublikationsstatusVeröffentlicht - 4 März 2019
Extern publiziertJa

Abstract

We provide the first example of a symmetry protected quantum phase that has universal computational power. This two-dimensional phase is protected by one-dimensional linelike symmetries that can be understood in terms of the local symmetries of a tensor network. These local symmetries imply that every ground state in the phase is a universal resource for measurement-based quantum computation.

ASJC Scopus Sachgebiete

Zitieren

Computationally Universal Phase of Quantum Matter. / Raussendorf, Robert; Okay, Cihan; Wang, Dong Sheng et al.
in: Physical review letters, Jahrgang 122, Nr. 9, 090501, 04.03.2019.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Raussendorf R, Okay C, Wang DS, Stephen DT, Nautrup HP. Computationally Universal Phase of Quantum Matter. Physical review letters. 2019 Mär 4;122(9):090501. doi: 10.48550/arXiv.1803.00095, 10.1103/PhysRevLett.122.090501
Raussendorf, Robert ; Okay, Cihan ; Wang, Dong Sheng et al. / Computationally Universal Phase of Quantum Matter. in: Physical review letters. 2019 ; Jahrgang 122, Nr. 9.
Download
@article{901f049bf62741068b2783b14dbceee5,
title = "Computationally Universal Phase of Quantum Matter",
abstract = "We provide the first example of a symmetry protected quantum phase that has universal computational power. This two-dimensional phase is protected by one-dimensional linelike symmetries that can be understood in terms of the local symmetries of a tensor network. These local symmetries imply that every ground state in the phase is a universal resource for measurement-based quantum computation.",
author = "Robert Raussendorf and Cihan Okay and Wang, {Dong Sheng} and Stephen, {David T.} and Nautrup, {Hendrik Poulsen}",
note = "Funding Information: This work is supported by the NSERC (C. O., D.-S. W., D. T. S., R. R.), Cifar (R. R.), the Stewart Blusson Quantum Matter Institute (C. O. and D.-S. W.), ERC Grant WASCOSYS, Grant No. 636201 (D. T. S.), and the Austrian Science Fund FWF within the DK-ALM: W1259-N27 (H. P. N.). D.-S. W. thanks Z. C. Gu for discussions. ",
year = "2019",
month = mar,
day = "4",
doi = "10.48550/arXiv.1803.00095",
language = "English",
volume = "122",
journal = "Physical review letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "9",

}

Download

TY - JOUR

T1 - Computationally Universal Phase of Quantum Matter

AU - Raussendorf, Robert

AU - Okay, Cihan

AU - Wang, Dong Sheng

AU - Stephen, David T.

AU - Nautrup, Hendrik Poulsen

N1 - Funding Information: This work is supported by the NSERC (C. O., D.-S. W., D. T. S., R. R.), Cifar (R. R.), the Stewart Blusson Quantum Matter Institute (C. O. and D.-S. W.), ERC Grant WASCOSYS, Grant No. 636201 (D. T. S.), and the Austrian Science Fund FWF within the DK-ALM: W1259-N27 (H. P. N.). D.-S. W. thanks Z. C. Gu for discussions.

PY - 2019/3/4

Y1 - 2019/3/4

N2 - We provide the first example of a symmetry protected quantum phase that has universal computational power. This two-dimensional phase is protected by one-dimensional linelike symmetries that can be understood in terms of the local symmetries of a tensor network. These local symmetries imply that every ground state in the phase is a universal resource for measurement-based quantum computation.

AB - We provide the first example of a symmetry protected quantum phase that has universal computational power. This two-dimensional phase is protected by one-dimensional linelike symmetries that can be understood in terms of the local symmetries of a tensor network. These local symmetries imply that every ground state in the phase is a universal resource for measurement-based quantum computation.

UR - http://www.scopus.com/inward/record.url?scp=85062955055&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1803.00095

DO - 10.48550/arXiv.1803.00095

M3 - Article

C2 - 30932542

AN - SCOPUS:85062955055

VL - 122

JO - Physical review letters

JF - Physical review letters

SN - 0031-9007

IS - 9

M1 - 090501

ER -

Von denselben Autoren