Comptage des quiddités sur les corps finis et sur quelques anneaux ℤ/Nℤ

Publikation: Arbeitspapier/PreprintPreprint

Autoren

Externe Organisationen

  • Universite de Reims Champagne-Ardenne
Forschungs-netzwerk anzeigen

Details

OriginalspracheFranzösisch
Seitenumfang32
PublikationsstatusElektronisch veröffentlicht (E-Pub) - 6 Apr. 2023

Abstract

The λ-quiddities of size n are n-tuples of elements of a fixed set, solutions of a matrix equation appearing in the study of Coxeter friezes. These can be considered on various sets with very different structures from one set to another. The main objective of this text is to obtain explicit formulas giving the number of λ-quiddities of size n over finite fields and over the rings ℤ/Nℤ with N=4m and m square free. We will also give some elements about the asymptotic behavior of the number of λ-quiddities verifying an irreducibility condition over ℤ/Nℤ when N goes to the infinity.

Zitieren

Comptage des quiddités sur les corps finis et sur quelques anneaux ℤ/Nℤ. / Cuntz, Michael; Mabilat, Flavien.
2023.

Publikation: Arbeitspapier/PreprintPreprint

Cuntz M, Mabilat F. Comptage des quiddités sur les corps finis et sur quelques anneaux ℤ/Nℤ. 2023 Apr 6. Epub 2023 Apr 6. doi: 10.48550/arXiv.2304.03071
Download
@techreport{9c05f72fb84c4ad99b5f1248ee344e68,
title = "Comptage des quiddit{\'e}s sur les corps finis et sur quelques anneaux ℤ/Nℤ",
abstract = "The λ-quiddities of size n are n-tuples of elements of a fixed set, solutions of a matrix equation appearing in the study of Coxeter friezes. These can be considered on various sets with very different structures from one set to another. The main objective of this text is to obtain explicit formulas giving the number of λ-quiddities of size n over finite fields and over the rings ℤ/Nℤ with N=4m and m square free. We will also give some elements about the asymptotic behavior of the number of λ-quiddities verifying an irreducibility condition over ℤ/Nℤ when N goes to the infinity.",
author = "Michael Cuntz and Flavien Mabilat",
year = "2023",
month = apr,
day = "6",
doi = "10.48550/arXiv.2304.03071",
language = "French",
type = "WorkingPaper",

}

Download

TY - UNPB

T1 - Comptage des quiddités sur les corps finis et sur quelques anneaux ℤ/Nℤ

AU - Cuntz, Michael

AU - Mabilat, Flavien

PY - 2023/4/6

Y1 - 2023/4/6

N2 - The λ-quiddities of size n are n-tuples of elements of a fixed set, solutions of a matrix equation appearing in the study of Coxeter friezes. These can be considered on various sets with very different structures from one set to another. The main objective of this text is to obtain explicit formulas giving the number of λ-quiddities of size n over finite fields and over the rings ℤ/Nℤ with N=4m and m square free. We will also give some elements about the asymptotic behavior of the number of λ-quiddities verifying an irreducibility condition over ℤ/Nℤ when N goes to the infinity.

AB - The λ-quiddities of size n are n-tuples of elements of a fixed set, solutions of a matrix equation appearing in the study of Coxeter friezes. These can be considered on various sets with very different structures from one set to another. The main objective of this text is to obtain explicit formulas giving the number of λ-quiddities of size n over finite fields and over the rings ℤ/Nℤ with N=4m and m square free. We will also give some elements about the asymptotic behavior of the number of λ-quiddities verifying an irreducibility condition over ℤ/Nℤ when N goes to the infinity.

U2 - 10.48550/arXiv.2304.03071

DO - 10.48550/arXiv.2304.03071

M3 - Preprint

BT - Comptage des quiddités sur les corps finis et sur quelques anneaux ℤ/Nℤ

ER -

Von denselben Autoren