Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 042002 |
Fachzeitschrift | Physical Review D |
Jahrgang | 94 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - 15 Aug. 2016 |
Abstract
We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band 100-1500 Hz and with a frequency time derivative in the range of [-1.18,+1.00]×10-8 Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from the initial LIGO sixth science run and covers a larger parameter space with respect to any past search. A Loosely Coherent detection pipeline was applied to follow up weak outliers in both Gaussian (95% recovery rate) and non-Gaussian (75% recovery rate) bands. No gravitational wave signals were observed, and upper limits were placed on their strength. Our smallest upper limit on worst-case (linearly polarized) strain amplitude h0 is 9.7×10-25 near 169 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 5.5×10-24. Both cases refer to all sky locations and entire range of frequency derivative values.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Physik und Astronomie (sonstige)
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical Review D, Jahrgang 94, Nr. 4, 042002, 15.08.2016.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data
AU - The LIGO Scientific Collaboration
AU - The Virgo Collaboration
AU - Abbott, B. P.
AU - Abbott, R.
AU - Abbott, T. D.
AU - Abernathy, M. R.
AU - Acernese, F.
AU - Ackley, K.
AU - Adams, C.
AU - Adams, T.
AU - Addesso, P.
AU - Adhikari, R. X.
AU - Adya, V. B.
AU - Affeldt, C.
AU - Agathos, M.
AU - Agatsuma, K.
AU - Aggarwal, N.
AU - Aguiar, O. D.
AU - Aiello, L.
AU - Ain, A.
AU - Ajith, P.
AU - Allen, Bruce
AU - Allocca, A.
AU - Altin, P. A.
AU - Bose, S.
AU - Brown, D. A.
AU - Chen, Y.
AU - Danilishin, S. L.
AU - Danzmann, Karsten
AU - Hanke, M. M.
AU - Hennig, J.
AU - Heurs, Michele
AU - Lee, H. M.
AU - Lee, H. M.
AU - Lück, Harald
AU - Nguyen, T. T.
AU - Schmidt, J.
AU - Schmidt, P.
AU - Shaltev, M.
AU - Steinmeyer, Daniel
AU - Sun, L.
AU - Vahlbruch, Henning Fedor Cornelius
AU - Wang, M.
AU - Wang, X.
AU - Wang, Y.
AU - Wei, L. W.
AU - Willke, Benno
AU - Wittel, Holger
AU - Zhang, L.
AU - Zhang, Y.
AU - Zhou, M.
AU - Aufmuth, Peter
AU - Bisht, A.
AU - Kaufer, Stefan
AU - Krüger, Christian
AU - Lough, J. D.
AU - Sawadsky, A.
AU - Singh Mehra, Aditya
N1 - Funding information: The authors gratefully acknowledge the support of the U. S. National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economa y Competitividad, the Conselleria dEconomia i Competitivitat and Conselleria dEducaci, Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Commission, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, and Innovation, Fundacao de Amparo Pesquisa do Estado de Sao Paulo (FAPESP), Russian Foundation for Basic Research, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources.
PY - 2016/8/15
Y1 - 2016/8/15
N2 - We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band 100-1500 Hz and with a frequency time derivative in the range of [-1.18,+1.00]×10-8 Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from the initial LIGO sixth science run and covers a larger parameter space with respect to any past search. A Loosely Coherent detection pipeline was applied to follow up weak outliers in both Gaussian (95% recovery rate) and non-Gaussian (75% recovery rate) bands. No gravitational wave signals were observed, and upper limits were placed on their strength. Our smallest upper limit on worst-case (linearly polarized) strain amplitude h0 is 9.7×10-25 near 169 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 5.5×10-24. Both cases refer to all sky locations and entire range of frequency derivative values.
AB - We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band 100-1500 Hz and with a frequency time derivative in the range of [-1.18,+1.00]×10-8 Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from the initial LIGO sixth science run and covers a larger parameter space with respect to any past search. A Loosely Coherent detection pipeline was applied to follow up weak outliers in both Gaussian (95% recovery rate) and non-Gaussian (75% recovery rate) bands. No gravitational wave signals were observed, and upper limits were placed on their strength. Our smallest upper limit on worst-case (linearly polarized) strain amplitude h0 is 9.7×10-25 near 169 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 5.5×10-24. Both cases refer to all sky locations and entire range of frequency derivative values.
UR - http://www.scopus.com/inward/record.url?scp=84984918708&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.94.042002
DO - 10.1103/PhysRevD.94.042002
M3 - Article
AN - SCOPUS:84984918708
VL - 94
JO - Physical Review D
JF - Physical Review D
SN - 2470-0010
IS - 4
M1 - 042002
ER -