Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 141-150 |
Seitenumfang | 10 |
Fachzeitschrift | International journal of computer assisted radiology and surgery |
Jahrgang | 15 |
Frühes Online-Datum | 4 Sept. 2019 |
Publikationsstatus | Veröffentlicht - Jan. 2020 |
Abstract
Purpose: Incidental aneurysms pose a challenge to physicians who need to decide whether or not to treat them. A statistical model could potentially support such treatment decisions. The aim of this study was to compare a previously developed aneurysm rupture logistic regression probability model (LRM) to other machine learning (ML) classifiers for discrimination of aneurysm rupture status. Methods: Hemodynamic, morphological, and patient-related information of 1631 cerebral aneurysms characterized by computational fluid dynamics simulations were used to train support vector machines (SVMs) with linear and RBF kernel (RBF-SVM), k-nearest neighbors (kNN), decision tree, random forest, and multilayer perceptron (MLP) neural network classifiers for predicting the aneurysm rupture status. The classifiers’ accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were evaluated and compared to the LRM using 249 test cases obtained from two external cohorts. Additionally, important variables were determined based on the random forest and weights of the linear SVM. Results: The AUCs of the MLP, LRM, linear SVM, RBF-SVM, kNN, decision tree, and random forest were 0.83, 0.82, 0.80, 0.81, 0.76, 0.70, and 0.79, respectively. The accuracy ranged between 0.76 (decision tree,) and 0.79 (linear SVM, RBF-SVM, and MLP). Important variables for predicting the aneurysm rupture status included aneurysm location, the mean surface curvature, and maximum flow velocity. Conclusion: The performance of the LRM was overall comparable to that of the other ML classifiers, confirming its potential for aneurysm rupture assessment. To further improve the predictions, additional information, e.g., related to the aneurysm wall, might be needed.
ASJC Scopus Sachgebiete
- Medizin (insg.)
- Chirurgie
- Ingenieurwesen (insg.)
- Biomedizintechnik
- Medizin (insg.)
- Radiologie, Nuklearmedizin und Bildgebung
- Informatik (insg.)
- Maschinelles Sehen und Mustererkennung
- Informatik (insg.)
- Angewandte Informatik
- Medizin (insg.)
- Gesundheitsinformatik
- Informatik (insg.)
- Computergrafik und computergestütztes Design
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International journal of computer assisted radiology and surgery, Jahrgang 15, 01.2020, S. 141-150.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Comparison of statistical learning approaches for cerebral aneurysm rupture assessment
AU - Detmer, Felicitas J.
AU - Lückehe, Daniel
AU - Mut, Fernando
AU - Slawski, Martin
AU - Hirsch, Sven
AU - Bijlenga, Philippe
AU - von Voigt, Gabriele
AU - Cebral, Juan R.
N1 - Funding Information: SH and PB were supported by SystemsX.ch project AneuX evaluated by the Swiss National Science Foundation. Data for the AneuX dataset was collected and processed in the context of the @neurIST project funded by the EU commission (IST-2004-027703) and AneuX project evaluated by the Swiss National Science Foundation and funded by the SystemsX.ch initiative (MRD 2014/261). Acknowledgements
PY - 2020/1
Y1 - 2020/1
N2 - Purpose: Incidental aneurysms pose a challenge to physicians who need to decide whether or not to treat them. A statistical model could potentially support such treatment decisions. The aim of this study was to compare a previously developed aneurysm rupture logistic regression probability model (LRM) to other machine learning (ML) classifiers for discrimination of aneurysm rupture status. Methods: Hemodynamic, morphological, and patient-related information of 1631 cerebral aneurysms characterized by computational fluid dynamics simulations were used to train support vector machines (SVMs) with linear and RBF kernel (RBF-SVM), k-nearest neighbors (kNN), decision tree, random forest, and multilayer perceptron (MLP) neural network classifiers for predicting the aneurysm rupture status. The classifiers’ accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were evaluated and compared to the LRM using 249 test cases obtained from two external cohorts. Additionally, important variables were determined based on the random forest and weights of the linear SVM. Results: The AUCs of the MLP, LRM, linear SVM, RBF-SVM, kNN, decision tree, and random forest were 0.83, 0.82, 0.80, 0.81, 0.76, 0.70, and 0.79, respectively. The accuracy ranged between 0.76 (decision tree,) and 0.79 (linear SVM, RBF-SVM, and MLP). Important variables for predicting the aneurysm rupture status included aneurysm location, the mean surface curvature, and maximum flow velocity. Conclusion: The performance of the LRM was overall comparable to that of the other ML classifiers, confirming its potential for aneurysm rupture assessment. To further improve the predictions, additional information, e.g., related to the aneurysm wall, might be needed.
AB - Purpose: Incidental aneurysms pose a challenge to physicians who need to decide whether or not to treat them. A statistical model could potentially support such treatment decisions. The aim of this study was to compare a previously developed aneurysm rupture logistic regression probability model (LRM) to other machine learning (ML) classifiers for discrimination of aneurysm rupture status. Methods: Hemodynamic, morphological, and patient-related information of 1631 cerebral aneurysms characterized by computational fluid dynamics simulations were used to train support vector machines (SVMs) with linear and RBF kernel (RBF-SVM), k-nearest neighbors (kNN), decision tree, random forest, and multilayer perceptron (MLP) neural network classifiers for predicting the aneurysm rupture status. The classifiers’ accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were evaluated and compared to the LRM using 249 test cases obtained from two external cohorts. Additionally, important variables were determined based on the random forest and weights of the linear SVM. Results: The AUCs of the MLP, LRM, linear SVM, RBF-SVM, kNN, decision tree, and random forest were 0.83, 0.82, 0.80, 0.81, 0.76, 0.70, and 0.79, respectively. The accuracy ranged between 0.76 (decision tree,) and 0.79 (linear SVM, RBF-SVM, and MLP). Important variables for predicting the aneurysm rupture status included aneurysm location, the mean surface curvature, and maximum flow velocity. Conclusion: The performance of the LRM was overall comparable to that of the other ML classifiers, confirming its potential for aneurysm rupture assessment. To further improve the predictions, additional information, e.g., related to the aneurysm wall, might be needed.
KW - Cerebral aneurysm
KW - Hemodynamics
KW - Machine learning
KW - Prediction
KW - Risk factors
KW - Shape
UR - http://www.scopus.com/inward/record.url?scp=85072183125&partnerID=8YFLogxK
U2 - 10.1007/s11548-019-02065-2
DO - 10.1007/s11548-019-02065-2
M3 - Article
C2 - 31485987
AN - SCOPUS:85072183125
VL - 15
SP - 141
EP - 150
JO - International journal of computer assisted radiology and surgery
JF - International journal of computer assisted radiology and surgery
SN - 1861-6410
ER -