Comparison of spatial ion distributions from different ionization sources

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)21-29
Seitenumfang9
FachzeitschriftInternational Journal for Ion Mobility Spectrometry
Jahrgang22
Ausgabenummer1
Frühes Online-Datum15 Dez. 2018
PublikationsstatusVeröffentlicht - 15 Apr. 2019

Abstract

In order to optimize an ion mobility spectrometer (IMS) with respect to resolving power and sensitivity, the exact spatial ion density distribution generated by the used ionization source is of major interest. In this work, we investigate the two-dimensional (2D) spatial ion density distribution generated by a 63 Ni source and the three-dimensional (3D) spatial ion density distributions generated by a radioactive 3 H electron source, our non-radioactive electron source and an X-ray source. Therefore, we used an experimental setup consisting of the ionization source under investigation, an ionization region, a 5 mm short drift tube and a PCB Faraday detector segmented into stripe electrodes to measure the ion current. Repeating this measurement for different detector angles, the resulting 3D spatial ion density distribution can be calculated by image reconstruction. Furthermore, we varied the kinetic electron energy of our non-radioactive electron source in order to validate the simulated ion density distribution shown in previous work.

ASJC Scopus Sachgebiete

Zitieren

Comparison of spatial ion distributions from different ionization sources. / Bunert, Erik; Kirk, Ansgar T.; Käbein, Oliver et al.
in: International Journal for Ion Mobility Spectrometry, Jahrgang 22, Nr. 1, 15.04.2019, S. 21-29.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Bunert, E, Kirk, AT, Käbein, O & Zimmermann, S 2019, 'Comparison of spatial ion distributions from different ionization sources', International Journal for Ion Mobility Spectrometry, Jg. 22, Nr. 1, S. 21-29. https://doi.org/10.1007/s12127-018-0241-3
Bunert, E., Kirk, A. T., Käbein, O., & Zimmermann, S. (2019). Comparison of spatial ion distributions from different ionization sources. International Journal for Ion Mobility Spectrometry, 22(1), 21-29. https://doi.org/10.1007/s12127-018-0241-3
Bunert E, Kirk AT, Käbein O, Zimmermann S. Comparison of spatial ion distributions from different ionization sources. International Journal for Ion Mobility Spectrometry. 2019 Apr 15;22(1):21-29. Epub 2018 Dez 15. doi: 10.1007/s12127-018-0241-3
Bunert, Erik ; Kirk, Ansgar T. ; Käbein, Oliver et al. / Comparison of spatial ion distributions from different ionization sources. in: International Journal for Ion Mobility Spectrometry. 2019 ; Jahrgang 22, Nr. 1. S. 21-29.
Download
@article{e92c2a2f7ec44f0dad9e8a5eca9c8ae1,
title = "Comparison of spatial ion distributions from different ionization sources",
abstract = " In order to optimize an ion mobility spectrometer (IMS) with respect to resolving power and sensitivity, the exact spatial ion density distribution generated by the used ionization source is of major interest. In this work, we investigate the two-dimensional (2D) spatial ion density distribution generated by a 63 Ni source and the three-dimensional (3D) spatial ion density distributions generated by a radioactive 3 H electron source, our non-radioactive electron source and an X-ray source. Therefore, we used an experimental setup consisting of the ionization source under investigation, an ionization region, a 5 mm short drift tube and a PCB Faraday detector segmented into stripe electrodes to measure the ion current. Repeating this measurement for different detector angles, the resulting 3D spatial ion density distribution can be calculated by image reconstruction. Furthermore, we varied the kinetic electron energy of our non-radioactive electron source in order to validate the simulated ion density distribution shown in previous work. ",
keywords = "APCI, Ion distribution, Ion generation, Ion profiles, Non-radioactive electron source, Spatial ion density distribution, Tritium source, X-ray-source",
author = "Erik Bunert and Kirk, {Ansgar T.} and Oliver K{\"a}bein and Stefan Zimmermann",
note = "{\textcopyright} 2018, Springer-Verlag GmbH Germany, part of Springer Nature",
year = "2019",
month = apr,
day = "15",
doi = "10.1007/s12127-018-0241-3",
language = "English",
volume = "22",
pages = "21--29",
number = "1",

}

Download

TY - JOUR

T1 - Comparison of spatial ion distributions from different ionization sources

AU - Bunert, Erik

AU - Kirk, Ansgar T.

AU - Käbein, Oliver

AU - Zimmermann, Stefan

N1 - © 2018, Springer-Verlag GmbH Germany, part of Springer Nature

PY - 2019/4/15

Y1 - 2019/4/15

N2 - In order to optimize an ion mobility spectrometer (IMS) with respect to resolving power and sensitivity, the exact spatial ion density distribution generated by the used ionization source is of major interest. In this work, we investigate the two-dimensional (2D) spatial ion density distribution generated by a 63 Ni source and the three-dimensional (3D) spatial ion density distributions generated by a radioactive 3 H electron source, our non-radioactive electron source and an X-ray source. Therefore, we used an experimental setup consisting of the ionization source under investigation, an ionization region, a 5 mm short drift tube and a PCB Faraday detector segmented into stripe electrodes to measure the ion current. Repeating this measurement for different detector angles, the resulting 3D spatial ion density distribution can be calculated by image reconstruction. Furthermore, we varied the kinetic electron energy of our non-radioactive electron source in order to validate the simulated ion density distribution shown in previous work.

AB - In order to optimize an ion mobility spectrometer (IMS) with respect to resolving power and sensitivity, the exact spatial ion density distribution generated by the used ionization source is of major interest. In this work, we investigate the two-dimensional (2D) spatial ion density distribution generated by a 63 Ni source and the three-dimensional (3D) spatial ion density distributions generated by a radioactive 3 H electron source, our non-radioactive electron source and an X-ray source. Therefore, we used an experimental setup consisting of the ionization source under investigation, an ionization region, a 5 mm short drift tube and a PCB Faraday detector segmented into stripe electrodes to measure the ion current. Repeating this measurement for different detector angles, the resulting 3D spatial ion density distribution can be calculated by image reconstruction. Furthermore, we varied the kinetic electron energy of our non-radioactive electron source in order to validate the simulated ion density distribution shown in previous work.

KW - APCI

KW - Ion distribution

KW - Ion generation

KW - Ion profiles

KW - Non-radioactive electron source

KW - Spatial ion density distribution

KW - Tritium source

KW - X-ray-source

UR - http://www.scopus.com/inward/record.url?scp=85058496366&partnerID=8YFLogxK

U2 - 10.1007/s12127-018-0241-3

DO - 10.1007/s12127-018-0241-3

M3 - Article

AN - SCOPUS:85058496366

VL - 22

SP - 21

EP - 29

JO - International Journal for Ion Mobility Spectrometry

JF - International Journal for Ion Mobility Spectrometry

SN - 1435-6163

IS - 1

ER -

Von denselben Autoren