Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 492-506 |
Seitenumfang | 15 |
Fachzeitschrift | Journal of Sol-Gel Science and Technology |
Jahrgang | 78 |
Ausgabenummer | 3 |
Frühes Online-Datum | 1 März 2016 |
Publikationsstatus | Veröffentlicht - Juni 2016 |
Abstract
Abstract: Three sodium waterglass (NWG) such as commercial NWG (S1), NWG from pure rice husk ash (S2) and NWG from raw rice husk ash (S3) were applied for producing geopolymer cements using metakaolin (MK) as aluminosilicate source. Geopolymers (Geo1, Geo2 and Geo3) were prepared using each NWG with the molar ratios SiO2/Na2O and H2O/Na2O kept constant at 1.5 and 12, respectively. It could be observed that the water absorption of Geo1, Geo2 and Geo3 is 7, 9 and 13.2 % and the mass loss is 15.8, 14.7 and 12.4 %, respectively. Their compressive strength at 20 days (37.5/34.3/29.6 MPa) and 28 days (43.3/40.3/33.2 MPa) increases with increasing the aging and decreases in the course Geo1/Geo2/Geo3. Their average pore radius (6/8/20 nm) and cumulative pore volumes (155/205/245 mm3/g) increase in the course Geo1/Geo2/Geo3. It is discussed that the presence of phosphate known as corrosion inhibitors in raw rice husk ash hinders the dissolution of SiO2. It entails the formation of NaH2PO4 in S3 which reduces the soluble Si atoms. Therefore, less amount of metakaolin could be dissolved leaving thus a higher amount of unreacted metakaolin particles in Geo3. The reacted volumes and compositions of the geopolymers are different in the three cases, too. A content of approximately 20, 25 and 35 % of unreacted metakaolin was proved for Geo1, Geo2 and Geo3, respectively. Graphical Abstract: [Figure not available: see fulltext.]
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Werkstoffwissenschaften (insg.)
- Keramische und Verbundwerkstoffe
- Chemie (insg.)
- Allgemeine Chemie
- Werkstoffwissenschaften (insg.)
- Biomaterialien
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Werkstoffwissenschaften (insg.)
- Werkstoffchemie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Sol-Gel Science and Technology, Jahrgang 78, Nr. 3, 06.2016, S. 492-506.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Comparison of metakaolin-based geopolymer cements from commercial sodium waterglass and sodium waterglass from rice husk ash
AU - Tchakouté, Hervé K.
AU - Rüscher, Claus H.
AU - Kong, Sakeo
AU - Kamseu, Elie
AU - Leonelli, Cristina
N1 - Funding Information: Hervé Tchakouté Kouamo gratefully acknowledges the Alexander von Humboldt Foundation for financially support his Postdoctoral research (No. KAM/1155741 STP) in Institut für Mineralogie, Leibniz Universität Hannover, Germany.
PY - 2016/6
Y1 - 2016/6
N2 - Abstract: Three sodium waterglass (NWG) such as commercial NWG (S1), NWG from pure rice husk ash (S2) and NWG from raw rice husk ash (S3) were applied for producing geopolymer cements using metakaolin (MK) as aluminosilicate source. Geopolymers (Geo1, Geo2 and Geo3) were prepared using each NWG with the molar ratios SiO2/Na2O and H2O/Na2O kept constant at 1.5 and 12, respectively. It could be observed that the water absorption of Geo1, Geo2 and Geo3 is 7, 9 and 13.2 % and the mass loss is 15.8, 14.7 and 12.4 %, respectively. Their compressive strength at 20 days (37.5/34.3/29.6 MPa) and 28 days (43.3/40.3/33.2 MPa) increases with increasing the aging and decreases in the course Geo1/Geo2/Geo3. Their average pore radius (6/8/20 nm) and cumulative pore volumes (155/205/245 mm3/g) increase in the course Geo1/Geo2/Geo3. It is discussed that the presence of phosphate known as corrosion inhibitors in raw rice husk ash hinders the dissolution of SiO2. It entails the formation of NaH2PO4 in S3 which reduces the soluble Si atoms. Therefore, less amount of metakaolin could be dissolved leaving thus a higher amount of unreacted metakaolin particles in Geo3. The reacted volumes and compositions of the geopolymers are different in the three cases, too. A content of approximately 20, 25 and 35 % of unreacted metakaolin was proved for Geo1, Geo2 and Geo3, respectively. Graphical Abstract: [Figure not available: see fulltext.]
AB - Abstract: Three sodium waterglass (NWG) such as commercial NWG (S1), NWG from pure rice husk ash (S2) and NWG from raw rice husk ash (S3) were applied for producing geopolymer cements using metakaolin (MK) as aluminosilicate source. Geopolymers (Geo1, Geo2 and Geo3) were prepared using each NWG with the molar ratios SiO2/Na2O and H2O/Na2O kept constant at 1.5 and 12, respectively. It could be observed that the water absorption of Geo1, Geo2 and Geo3 is 7, 9 and 13.2 % and the mass loss is 15.8, 14.7 and 12.4 %, respectively. Their compressive strength at 20 days (37.5/34.3/29.6 MPa) and 28 days (43.3/40.3/33.2 MPa) increases with increasing the aging and decreases in the course Geo1/Geo2/Geo3. Their average pore radius (6/8/20 nm) and cumulative pore volumes (155/205/245 mm3/g) increase in the course Geo1/Geo2/Geo3. It is discussed that the presence of phosphate known as corrosion inhibitors in raw rice husk ash hinders the dissolution of SiO2. It entails the formation of NaH2PO4 in S3 which reduces the soluble Si atoms. Therefore, less amount of metakaolin could be dissolved leaving thus a higher amount of unreacted metakaolin particles in Geo3. The reacted volumes and compositions of the geopolymers are different in the three cases, too. A content of approximately 20, 25 and 35 % of unreacted metakaolin was proved for Geo1, Geo2 and Geo3, respectively. Graphical Abstract: [Figure not available: see fulltext.]
KW - Average pore radius
KW - Corrosion inhibitors
KW - Geopolymer cements
KW - Metakaolin
KW - Rice husk ash
KW - Sodium waterglass
UR - http://www.scopus.com/inward/record.url?scp=84959321610&partnerID=8YFLogxK
U2 - 10.1007/s10971-016-3983-6
DO - 10.1007/s10971-016-3983-6
M3 - Article
AN - SCOPUS:84959321610
VL - 78
SP - 492
EP - 506
JO - Journal of Sol-Gel Science and Technology
JF - Journal of Sol-Gel Science and Technology
SN - 0928-0707
IS - 3
ER -