Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Material Forming |
Untertitel | The 26th International ESAFORM Conference on Material Forming |
Herausgeber/-innen | Lukasz Madej, Mateusz Sitko, Konrad Perzynsk |
Seiten | 1083-1090 |
Seitenumfang | 8 |
Publikationsstatus | Veröffentlicht - 19 Apr. 2023 |
Veranstaltung | 26th International ESAFORM Conference on Material Forming, ESAFORM 2023 - Kraków, Polen Dauer: 19 Apr. 2023 → 21 Apr. 2023 |
Publikationsreihe
Name | Materials Research Proceedings |
---|---|
Band | 28 |
ISSN (Print) | 2474-3941 |
ISSN (elektronisch) | 2474-395X |
Abstract
The novel Tailored Forming process chain enables the combination of crucial properties of different materials by manufacturing hybrid components. Thereby, the limitations of monolithic components are surpassed. However, manufacturing hybrid bulk components introduces new challenges for hot forming. For example, when combining steel and aluminium, the main challenge is establishing and maintaining a temperature gradient in the component to match the differing flow stresses of the materials for a successful forging. For establishing the gradient, a particular heating strategy, including inductive heating of the steel and parallel partial cooling of the aluminium, is necessary. After reaching the target temperature, the heated component has to be transferred to the forging die by a robot while maintaining the essential temperature gradient. Therefore, a portable spray nozzle cooling system attached to the robot's end effector was designed in former work. This paper aims to validate spray nozzles for establishing a temperature gradient in a hybrid workpiece with a particular heating strategy compared to a currently used immersion cooling. For the validation, the nozzles will cool a hybrid steel aluminium shaft, whereby the nozzles' operation parameters influence on the temperature gradient will be investigated. Finally, the performance of the nozzles will be compared against the currently used immersion cooling.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Allgemeine Materialwissenschaften
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Material Forming : The 26th International ESAFORM Conference on Material Forming. Hrsg. / Lukasz Madej; Mateusz Sitko; Konrad Perzynsk. 2023. S. 1083-1090 (Materials Research Proceedings; Band 28).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Comparative investigation of partial cooling methods for induction heating of hybrid bulk components for hot forming
AU - Ince, Caner Veli
AU - Katz, Fabian
AU - Raatz, Annika
N1 - Funding Information: The results presented in this paper were obtained within the Collaborative Research Centre 1153 ’Process chain to produce hybrid high-performance components by Tailored Forming’ - 252662854 in subproject C07. The authors would like to thank the German Research Foundation (DFG) for the financial and organizational support of this project.
PY - 2023/4/19
Y1 - 2023/4/19
N2 - The novel Tailored Forming process chain enables the combination of crucial properties of different materials by manufacturing hybrid components. Thereby, the limitations of monolithic components are surpassed. However, manufacturing hybrid bulk components introduces new challenges for hot forming. For example, when combining steel and aluminium, the main challenge is establishing and maintaining a temperature gradient in the component to match the differing flow stresses of the materials for a successful forging. For establishing the gradient, a particular heating strategy, including inductive heating of the steel and parallel partial cooling of the aluminium, is necessary. After reaching the target temperature, the heated component has to be transferred to the forging die by a robot while maintaining the essential temperature gradient. Therefore, a portable spray nozzle cooling system attached to the robot's end effector was designed in former work. This paper aims to validate spray nozzles for establishing a temperature gradient in a hybrid workpiece with a particular heating strategy compared to a currently used immersion cooling. For the validation, the nozzles will cool a hybrid steel aluminium shaft, whereby the nozzles' operation parameters influence on the temperature gradient will be investigated. Finally, the performance of the nozzles will be compared against the currently used immersion cooling.
AB - The novel Tailored Forming process chain enables the combination of crucial properties of different materials by manufacturing hybrid components. Thereby, the limitations of monolithic components are surpassed. However, manufacturing hybrid bulk components introduces new challenges for hot forming. For example, when combining steel and aluminium, the main challenge is establishing and maintaining a temperature gradient in the component to match the differing flow stresses of the materials for a successful forging. For establishing the gradient, a particular heating strategy, including inductive heating of the steel and parallel partial cooling of the aluminium, is necessary. After reaching the target temperature, the heated component has to be transferred to the forging die by a robot while maintaining the essential temperature gradient. Therefore, a portable spray nozzle cooling system attached to the robot's end effector was designed in former work. This paper aims to validate spray nozzles for establishing a temperature gradient in a hybrid workpiece with a particular heating strategy compared to a currently used immersion cooling. For the validation, the nozzles will cool a hybrid steel aluminium shaft, whereby the nozzles' operation parameters influence on the temperature gradient will be investigated. Finally, the performance of the nozzles will be compared against the currently used immersion cooling.
KW - Form Variable Handling
KW - Function Integrated Handling
KW - Partial Cooling
KW - Tailored Forming
UR - http://www.scopus.com/inward/record.url?scp=85160216212&partnerID=8YFLogxK
U2 - 10.21741/9781644902479-119
DO - 10.21741/9781644902479-119
M3 - Conference contribution
AN - SCOPUS:85160216212
SN - 9781644902462
T3 - Materials Research Proceedings
SP - 1083
EP - 1090
BT - Material Forming
A2 - Madej, Lukasz
A2 - Sitko, Mateusz
A2 - Perzynsk, Konrad
T2 - 26th International ESAFORM Conference on Material Forming, ESAFORM 2023
Y2 - 19 April 2023 through 21 April 2023
ER -