Compactness characterization of operators in the Toeplitz algebra of the Fock space Fαp

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Wolfram Bauer
  • Joshua Isralowitz

Externe Organisationen

  • Georg-August-Universität Göttingen
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1323-1355
Seitenumfang33
FachzeitschriftJournal of functional analysis
Jahrgang263
Ausgabenummer5
PublikationsstatusVeröffentlicht - 1 Sept. 2012
Extern publiziertJa

Abstract

For 1<p<∞ let T p α be the norm closure of the algebra generated by Toeplitz operators with bounded symbols acting on the standard weighted Fock space F α p In this paper, we will show that an operator A is compact on Fαp if and only if A∈T p α and the Berezin transform B α(A) of A vanishes at infinity.

ASJC Scopus Sachgebiete

Zitieren

Compactness characterization of operators in the Toeplitz algebra of the Fock space Fαp. / Bauer, Wolfram; Isralowitz, Joshua.
in: Journal of functional analysis, Jahrgang 263, Nr. 5, 01.09.2012, S. 1323-1355.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Bauer W, Isralowitz J. Compactness characterization of operators in the Toeplitz algebra of the Fock space Fαp. Journal of functional analysis. 2012 Sep 1;263(5):1323-1355. doi: 10.1016/j.jfa.2012.04.020
Bauer, Wolfram ; Isralowitz, Joshua. / Compactness characterization of operators in the Toeplitz algebra of the Fock space Fαp. in: Journal of functional analysis. 2012 ; Jahrgang 263, Nr. 5. S. 1323-1355.
Download
@article{4dd75bcdf43a489cbbaab4ee77fc83f6,
title = "Compactness characterization of operators in the Toeplitz algebra of the Fock space Fαp",
abstract = "For 1p α be the norm closure of the algebra generated by Toeplitz operators with bounded symbols acting on the standard weighted Fock space F α p In this paper, we will show that an operator A is compact on Fαp if and only if A∈T p α and the Berezin transform B α(A) of A vanishes at infinity.",
keywords = "Fock spaces, Toeplitz algebra, Toeplitz operators",
author = "Wolfram Bauer and Joshua Isralowitz",
note = "Funding Information: Both authors were supported by an Emmy-Noether grant of Deutsche Forschungsgemeinschaft. Corresponding author. E-mail addresses: wbauer@uni-math.gwdg.de (W. Bauer), jbi2@uni-math.gwdg.de (J. Isralowitz). Copyright: Copyright 2012 Elsevier B.V., All rights reserved.",
year = "2012",
month = sep,
day = "1",
doi = "10.1016/j.jfa.2012.04.020",
language = "English",
volume = "263",
pages = "1323--1355",
journal = "Journal of functional analysis",
issn = "0022-1236",
publisher = "Academic Press Inc.",
number = "5",

}

Download

TY - JOUR

T1 - Compactness characterization of operators in the Toeplitz algebra of the Fock space Fαp

AU - Bauer, Wolfram

AU - Isralowitz, Joshua

N1 - Funding Information: Both authors were supported by an Emmy-Noether grant of Deutsche Forschungsgemeinschaft. Corresponding author. E-mail addresses: wbauer@uni-math.gwdg.de (W. Bauer), jbi2@uni-math.gwdg.de (J. Isralowitz). Copyright: Copyright 2012 Elsevier B.V., All rights reserved.

PY - 2012/9/1

Y1 - 2012/9/1

N2 - For 1p α be the norm closure of the algebra generated by Toeplitz operators with bounded symbols acting on the standard weighted Fock space F α p In this paper, we will show that an operator A is compact on Fαp if and only if A∈T p α and the Berezin transform B α(A) of A vanishes at infinity.

AB - For 1p α be the norm closure of the algebra generated by Toeplitz operators with bounded symbols acting on the standard weighted Fock space F α p In this paper, we will show that an operator A is compact on Fαp if and only if A∈T p α and the Berezin transform B α(A) of A vanishes at infinity.

KW - Fock spaces

KW - Toeplitz algebra

KW - Toeplitz operators

UR - http://www.scopus.com/inward/record.url?scp=84862987026&partnerID=8YFLogxK

U2 - 10.1016/j.jfa.2012.04.020

DO - 10.1016/j.jfa.2012.04.020

M3 - Article

AN - SCOPUS:84862987026

VL - 263

SP - 1323

EP - 1355

JO - Journal of functional analysis

JF - Journal of functional analysis

SN - 0022-1236

IS - 5

ER -