Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 215-234 |
Seitenumfang | 20 |
Fachzeitschrift | Geochimica et cosmochimica acta |
Jahrgang | 263 |
Frühes Online-Datum | 17 Juli 2019 |
Publikationsstatus | Veröffentlicht - 15 Okt. 2019 |
Abstract
Calcium-aluminum-rich inclusions (CAIs) are the oldest dated materials that provide crucial information about the isotopic reservoirs present in the early Solar System. For a variety of elements, CAIs have isotope compositions that are uniform yet distinct from later formed solid material. However, despite being the most abundant metal in the Solar System, the isotopic composition of Fe in CAIs is not well constrained. In an attempt to determine the Fe isotopic compositions of CAIs, we combine extensive work from a previously studied CAI sample set with new isotopic work characterizing mass-dependent and mass-independent (nucleosynthetic) signatures in Mg, Ca, and Fe. This investigation includes work on three mineral separates of the Allende CAI Egg 2. For all isotope systems investigated, we find that in general, fine-grained CAIs exhibit light mass-dependent isotopic signatures relative to terrestrial standards, whereas igneous CAIs have heavier isotopic compositions relative to the fine-grained CAIs. Importantly, the mass-dependent Fe isotope signatures of bulk CAIs show a range of both light (fine-grained CAIs) and heavy (igneous CAIs) isotopic signatures relative to bulk chondrites, suggesting that Fe isotope signatures in CAIs largely derive from mass fractionation events such as condensation and evaporation occurring in the nebula. Such signatures show that a significant portion of the secondary alteration experienced by CAIs, particularly prevalent in fine-grained inclusions, occurred in the nebula prior to accretion into their respective parent bodies. Regarding nucleosynthetic Fe isotope signatures, we do not observe any variation outside of analytical uncertainty in bulk CAIs compared to terrestrial standards. In contrast, all three Egg 2 mineral separates display resolved mass-independent excesses in 56Fe compared to terrestrial standards. Furthermore, we find that the combined mass-dependent and nucleosynthetic Fe isotopic compositions of the Egg 2 mineral separates are well correlated, likely indicating that Fe indigenous to the CAI is mixed with less anomalous Fe, presumably from the solar nebula. Thus, these reported nucleosynthetic anomalies may point in the direction of the original Fe isotope composition of the CAI-forming region, but they likely only provide a minimum isotopic difference between the original mass-independent Fe isotopic composition of CAIs and that of later formed solids.
ASJC Scopus Sachgebiete
- Erdkunde und Planetologie (insg.)
- Geochemie und Petrologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Geochimica et cosmochimica acta, Jahrgang 263, 15.10.2019, S. 215-234.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Combined mass-dependent and nucleosynthetic isotope variations in refractory inclusions and their mineral separates to determine their original Fe isotope compositions
AU - Shollenberger, Quinn R.
AU - Wittke, Andreas
AU - Render, Jan
AU - Mane, Prajkta
AU - Schuth, Stephan
AU - Weyer, Stefan
AU - Gussone, Nikolaus
AU - Wadhwa, Meenakshi
AU - Brennecka, Gregory A.
N1 - Funding Information: This work was supported by a Sofja Kovalevskaja award from the Alexander von Humboldt Foundation (G.A.B.)and a NASA Emerging Worlds award ( NNX15AH41G to M.W.). We thank C. Burkhardt for assistance with Ti isotopic measurements and for providing samples, T. Kruijer for providing CAI samples, T. Kleine for fruitful discussions, and the late G.J. Wasserburg for providing the Egg 2 sample. The authors thank Dimitri Papanastassiou and two anonymous reviewers for their helpful comments that improved the manuscript.
PY - 2019/10/15
Y1 - 2019/10/15
N2 - Calcium-aluminum-rich inclusions (CAIs) are the oldest dated materials that provide crucial information about the isotopic reservoirs present in the early Solar System. For a variety of elements, CAIs have isotope compositions that are uniform yet distinct from later formed solid material. However, despite being the most abundant metal in the Solar System, the isotopic composition of Fe in CAIs is not well constrained. In an attempt to determine the Fe isotopic compositions of CAIs, we combine extensive work from a previously studied CAI sample set with new isotopic work characterizing mass-dependent and mass-independent (nucleosynthetic) signatures in Mg, Ca, and Fe. This investigation includes work on three mineral separates of the Allende CAI Egg 2. For all isotope systems investigated, we find that in general, fine-grained CAIs exhibit light mass-dependent isotopic signatures relative to terrestrial standards, whereas igneous CAIs have heavier isotopic compositions relative to the fine-grained CAIs. Importantly, the mass-dependent Fe isotope signatures of bulk CAIs show a range of both light (fine-grained CAIs) and heavy (igneous CAIs) isotopic signatures relative to bulk chondrites, suggesting that Fe isotope signatures in CAIs largely derive from mass fractionation events such as condensation and evaporation occurring in the nebula. Such signatures show that a significant portion of the secondary alteration experienced by CAIs, particularly prevalent in fine-grained inclusions, occurred in the nebula prior to accretion into their respective parent bodies. Regarding nucleosynthetic Fe isotope signatures, we do not observe any variation outside of analytical uncertainty in bulk CAIs compared to terrestrial standards. In contrast, all three Egg 2 mineral separates display resolved mass-independent excesses in 56Fe compared to terrestrial standards. Furthermore, we find that the combined mass-dependent and nucleosynthetic Fe isotopic compositions of the Egg 2 mineral separates are well correlated, likely indicating that Fe indigenous to the CAI is mixed with less anomalous Fe, presumably from the solar nebula. Thus, these reported nucleosynthetic anomalies may point in the direction of the original Fe isotope composition of the CAI-forming region, but they likely only provide a minimum isotopic difference between the original mass-independent Fe isotopic composition of CAIs and that of later formed solids.
AB - Calcium-aluminum-rich inclusions (CAIs) are the oldest dated materials that provide crucial information about the isotopic reservoirs present in the early Solar System. For a variety of elements, CAIs have isotope compositions that are uniform yet distinct from later formed solid material. However, despite being the most abundant metal in the Solar System, the isotopic composition of Fe in CAIs is not well constrained. In an attempt to determine the Fe isotopic compositions of CAIs, we combine extensive work from a previously studied CAI sample set with new isotopic work characterizing mass-dependent and mass-independent (nucleosynthetic) signatures in Mg, Ca, and Fe. This investigation includes work on three mineral separates of the Allende CAI Egg 2. For all isotope systems investigated, we find that in general, fine-grained CAIs exhibit light mass-dependent isotopic signatures relative to terrestrial standards, whereas igneous CAIs have heavier isotopic compositions relative to the fine-grained CAIs. Importantly, the mass-dependent Fe isotope signatures of bulk CAIs show a range of both light (fine-grained CAIs) and heavy (igneous CAIs) isotopic signatures relative to bulk chondrites, suggesting that Fe isotope signatures in CAIs largely derive from mass fractionation events such as condensation and evaporation occurring in the nebula. Such signatures show that a significant portion of the secondary alteration experienced by CAIs, particularly prevalent in fine-grained inclusions, occurred in the nebula prior to accretion into their respective parent bodies. Regarding nucleosynthetic Fe isotope signatures, we do not observe any variation outside of analytical uncertainty in bulk CAIs compared to terrestrial standards. In contrast, all three Egg 2 mineral separates display resolved mass-independent excesses in 56Fe compared to terrestrial standards. Furthermore, we find that the combined mass-dependent and nucleosynthetic Fe isotopic compositions of the Egg 2 mineral separates are well correlated, likely indicating that Fe indigenous to the CAI is mixed with less anomalous Fe, presumably from the solar nebula. Thus, these reported nucleosynthetic anomalies may point in the direction of the original Fe isotope composition of the CAI-forming region, but they likely only provide a minimum isotopic difference between the original mass-independent Fe isotopic composition of CAIs and that of later formed solids.
KW - Ca isotopes
KW - CAIs
KW - Early Solar System
KW - Fe isotopes
KW - Mass-dependent fractionation
KW - Mg isotopes
KW - Nucleosynthetic anomalies
UR - http://www.scopus.com/inward/record.url?scp=85071829747&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2019.07.021
DO - 10.1016/j.gca.2019.07.021
M3 - Article
AN - SCOPUS:85071829747
VL - 263
SP - 215
EP - 234
JO - Geochimica et cosmochimica acta
JF - Geochimica et cosmochimica acta
SN - 0016-7037
ER -