Combinatorial simpliciality of arrangements of hyperplanes

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Externe Organisationen

  • Technische Universität Kaiserslautern
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)439-458
Seitenumfang20
FachzeitschriftBeitrage zur Algebra und Geometrie
Jahrgang56
Ausgabenummer2
PublikationsstatusVeröffentlicht - 28 Okt. 2015

Abstract

We introduce a combinatorial characterization of simpliciality for arrangements of hyperplanes. We then give a sharp upper bound for the number of hyperplanes of such an arrangement in the projective plane over a finite field, and present some series of arrangements related to the known arrangements in characteristic zero. We further enumerate simplicial arrangements with given symmetry groups. Finally, we determine all finite complex reflection groups affording combinatorially simplicial arrangements. It turns out that combinatorial simpliciality coincides with inductive freeness for finite complex reflection groups except for the Shephard–Todd group (Formula presented.).

ASJC Scopus Sachgebiete

Zitieren

Combinatorial simpliciality of arrangements of hyperplanes. / Cuntz, M.; Geis, D.
in: Beitrage zur Algebra und Geometrie, Jahrgang 56, Nr. 2, 28.10.2015, S. 439-458.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Cuntz, M & Geis, D 2015, 'Combinatorial simpliciality of arrangements of hyperplanes', Beitrage zur Algebra und Geometrie, Jg. 56, Nr. 2, S. 439-458. https://doi.org/10.1007/s13366-014-0190-x
Cuntz, M., & Geis, D. (2015). Combinatorial simpliciality of arrangements of hyperplanes. Beitrage zur Algebra und Geometrie, 56(2), 439-458. https://doi.org/10.1007/s13366-014-0190-x
Cuntz M, Geis D. Combinatorial simpliciality of arrangements of hyperplanes. Beitrage zur Algebra und Geometrie. 2015 Okt 28;56(2):439-458. doi: 10.1007/s13366-014-0190-x
Cuntz, M. ; Geis, D. / Combinatorial simpliciality of arrangements of hyperplanes. in: Beitrage zur Algebra und Geometrie. 2015 ; Jahrgang 56, Nr. 2. S. 439-458.
Download
@article{b4fa80c0a27c48ac83db0824bfd1ba87,
title = "Combinatorial simpliciality of arrangements of hyperplanes",
abstract = "We introduce a combinatorial characterization of simpliciality for arrangements of hyperplanes. We then give a sharp upper bound for the number of hyperplanes of such an arrangement in the projective plane over a finite field, and present some series of arrangements related to the known arrangements in characteristic zero. We further enumerate simplicial arrangements with given symmetry groups. Finally, we determine all finite complex reflection groups affording combinatorially simplicial arrangements. It turns out that combinatorial simpliciality coincides with inductive freeness for finite complex reflection groups except for the Shephard–Todd group (Formula presented.).",
keywords = "Arrangement of hyperplanes, Projective plane, Simplicial",
author = "M. Cuntz and D. Geis",
year = "2015",
month = oct,
day = "28",
doi = "10.1007/s13366-014-0190-x",
language = "English",
volume = "56",
pages = "439--458",
number = "2",

}

Download

TY - JOUR

T1 - Combinatorial simpliciality of arrangements of hyperplanes

AU - Cuntz, M.

AU - Geis, D.

PY - 2015/10/28

Y1 - 2015/10/28

N2 - We introduce a combinatorial characterization of simpliciality for arrangements of hyperplanes. We then give a sharp upper bound for the number of hyperplanes of such an arrangement in the projective plane over a finite field, and present some series of arrangements related to the known arrangements in characteristic zero. We further enumerate simplicial arrangements with given symmetry groups. Finally, we determine all finite complex reflection groups affording combinatorially simplicial arrangements. It turns out that combinatorial simpliciality coincides with inductive freeness for finite complex reflection groups except for the Shephard–Todd group (Formula presented.).

AB - We introduce a combinatorial characterization of simpliciality for arrangements of hyperplanes. We then give a sharp upper bound for the number of hyperplanes of such an arrangement in the projective plane over a finite field, and present some series of arrangements related to the known arrangements in characteristic zero. We further enumerate simplicial arrangements with given symmetry groups. Finally, we determine all finite complex reflection groups affording combinatorially simplicial arrangements. It turns out that combinatorial simpliciality coincides with inductive freeness for finite complex reflection groups except for the Shephard–Todd group (Formula presented.).

KW - Arrangement of hyperplanes

KW - Projective plane

KW - Simplicial

UR - http://www.scopus.com/inward/record.url?scp=84940506389&partnerID=8YFLogxK

U2 - 10.1007/s13366-014-0190-x

DO - 10.1007/s13366-014-0190-x

M3 - Article

AN - SCOPUS:84940506389

VL - 56

SP - 439

EP - 458

JO - Beitrage zur Algebra und Geometrie

JF - Beitrage zur Algebra und Geometrie

SN - 0138-4821

IS - 2

ER -

Von denselben Autoren