Collective-Mode Enhanced Matter-Wave Optics

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Christian Deppner
  • Waldemar Herr
  • Merle Cornelius
  • Peter Stromberger
  • Tammo Sternke
  • Christoph Grzeschik
  • Alexander Grote
  • Jan Rudolph
  • Sven Herrmann
  • Markus Krutzik
  • André Wenzlawski
  • Robin Corgier
  • Eric Charron
  • David Guéry-Odelin
  • Naceur Gaaloul
  • Claus Lämmerzahl
  • Achim Peters
  • Patrick Windpassinger
  • Ernst M. Rasel

Externe Organisationen

  • Johannes Gutenberg-Universität Mainz
  • Humboldt-Universität zu Berlin (HU Berlin)
  • Universität Paris-Saclay
  • Université de Toulouse
  • Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
  • Universität Bremen
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer100401
FachzeitschriftPhysical review letters
Jahrgang127
Ausgabenummer10
Frühes Online-Datum30 Aug. 2021
PublikationsstatusVeröffentlicht - 3 Sept. 2021

Abstract

In contrast to light, matter-wave optics of quantum gases deals with interactions even in free space and for ensembles comprising millions of atoms. We exploit these interactions in a quantum degenerate gas as an adjustable lens for coherent atom optics. By combining an interaction-driven quadrupole-mode excitation of a Bose-Einstein condensate (BEC) with a magnetic lens, we form a time-domain matter-wave lens system. The focus is tuned by the strength of the lensing potential and the oscillatory phase of the quadrupole mode. By placing the focus at infinity, we lower the total internal kinetic energy of a BEC comprising 101(37) thousand atoms in three dimensions to 3/2 kB·38-7+6 pK. Our method paves the way for free-fall experiments lasting ten or more seconds as envisioned for tests of fundamental physics and high-precision BEC interferometry, as well as opens up a new kinetic energy regime.

ASJC Scopus Sachgebiete

Zitieren

Collective-Mode Enhanced Matter-Wave Optics. / Deppner, Christian; Herr, Waldemar; Cornelius, Merle et al.
in: Physical review letters, Jahrgang 127, Nr. 10, 100401, 03.09.2021.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Deppner, C, Herr, W, Cornelius, M, Stromberger, P, Sternke, T, Grzeschik, C, Grote, A, Rudolph, J, Herrmann, S, Krutzik, M, Wenzlawski, A, Corgier, R, Charron, E, Guéry-Odelin, D, Gaaloul, N, Lämmerzahl, C, Peters, A, Windpassinger, P & Rasel, EM 2021, 'Collective-Mode Enhanced Matter-Wave Optics', Physical review letters, Jg. 127, Nr. 10, 100401. https://doi.org/10.1103/PhysRevLett.127.100401
Deppner, C., Herr, W., Cornelius, M., Stromberger, P., Sternke, T., Grzeschik, C., Grote, A., Rudolph, J., Herrmann, S., Krutzik, M., Wenzlawski, A., Corgier, R., Charron, E., Guéry-Odelin, D., Gaaloul, N., Lämmerzahl, C., Peters, A., Windpassinger, P., & Rasel, E. M. (2021). Collective-Mode Enhanced Matter-Wave Optics. Physical review letters, 127(10), Artikel 100401. https://doi.org/10.1103/PhysRevLett.127.100401
Deppner C, Herr W, Cornelius M, Stromberger P, Sternke T, Grzeschik C et al. Collective-Mode Enhanced Matter-Wave Optics. Physical review letters. 2021 Sep 3;127(10):100401. Epub 2021 Aug 30. doi: 10.1103/PhysRevLett.127.100401
Deppner, Christian ; Herr, Waldemar ; Cornelius, Merle et al. / Collective-Mode Enhanced Matter-Wave Optics. in: Physical review letters. 2021 ; Jahrgang 127, Nr. 10.
Download
@article{e815f4f10d5e49fab9ec025a312aa58a,
title = "Collective-Mode Enhanced Matter-Wave Optics",
abstract = "In contrast to light, matter-wave optics of quantum gases deals with interactions even in free space and for ensembles comprising millions of atoms. We exploit these interactions in a quantum degenerate gas as an adjustable lens for coherent atom optics. By combining an interaction-driven quadrupole-mode excitation of a Bose-Einstein condensate (BEC) with a magnetic lens, we form a time-domain matter-wave lens system. The focus is tuned by the strength of the lensing potential and the oscillatory phase of the quadrupole mode. By placing the focus at infinity, we lower the total internal kinetic energy of a BEC comprising 101(37) thousand atoms in three dimensions to 3/2 kB·38-7+6 pK. Our method paves the way for free-fall experiments lasting ten or more seconds as envisioned for tests of fundamental physics and high-precision BEC interferometry, as well as opens up a new kinetic energy regime.",
author = "Christian Deppner and Waldemar Herr and Merle Cornelius and Peter Stromberger and Tammo Sternke and Christoph Grzeschik and Alexander Grote and Jan Rudolph and Sven Herrmann and Markus Krutzik and Andr{\'e} Wenzlawski and Robin Corgier and Eric Charron and David Gu{\'e}ry-Odelin and Naceur Gaaloul and Claus L{\"a}mmerzahl and Achim Peters and Patrick Windpassinger and Rasel, {Ernst M.}",
note = "Funding Information: We acknowledge valuable discussions with R. Walser. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557 (QUANTUS-V Fallturm), as well as by the Centre for Quantum Engineering and Space-Time Research and the Deutsche Forschungsgemeinschaft (German Research Foundation) under Germany{\textquoteright}s Excellence Strategy—EXC 2123 Quantum Frontiers—Project No. 390837967 at Leibniz University Hannover.",
year = "2021",
month = sep,
day = "3",
doi = "10.1103/PhysRevLett.127.100401",
language = "English",
volume = "127",
journal = "Physical review letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "10",

}

Download

TY - JOUR

T1 - Collective-Mode Enhanced Matter-Wave Optics

AU - Deppner, Christian

AU - Herr, Waldemar

AU - Cornelius, Merle

AU - Stromberger, Peter

AU - Sternke, Tammo

AU - Grzeschik, Christoph

AU - Grote, Alexander

AU - Rudolph, Jan

AU - Herrmann, Sven

AU - Krutzik, Markus

AU - Wenzlawski, André

AU - Corgier, Robin

AU - Charron, Eric

AU - Guéry-Odelin, David

AU - Gaaloul, Naceur

AU - Lämmerzahl, Claus

AU - Peters, Achim

AU - Windpassinger, Patrick

AU - Rasel, Ernst M.

N1 - Funding Information: We acknowledge valuable discussions with R. Walser. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557 (QUANTUS-V Fallturm), as well as by the Centre for Quantum Engineering and Space-Time Research and the Deutsche Forschungsgemeinschaft (German Research Foundation) under Germany’s Excellence Strategy—EXC 2123 Quantum Frontiers—Project No. 390837967 at Leibniz University Hannover.

PY - 2021/9/3

Y1 - 2021/9/3

N2 - In contrast to light, matter-wave optics of quantum gases deals with interactions even in free space and for ensembles comprising millions of atoms. We exploit these interactions in a quantum degenerate gas as an adjustable lens for coherent atom optics. By combining an interaction-driven quadrupole-mode excitation of a Bose-Einstein condensate (BEC) with a magnetic lens, we form a time-domain matter-wave lens system. The focus is tuned by the strength of the lensing potential and the oscillatory phase of the quadrupole mode. By placing the focus at infinity, we lower the total internal kinetic energy of a BEC comprising 101(37) thousand atoms in three dimensions to 3/2 kB·38-7+6 pK. Our method paves the way for free-fall experiments lasting ten or more seconds as envisioned for tests of fundamental physics and high-precision BEC interferometry, as well as opens up a new kinetic energy regime.

AB - In contrast to light, matter-wave optics of quantum gases deals with interactions even in free space and for ensembles comprising millions of atoms. We exploit these interactions in a quantum degenerate gas as an adjustable lens for coherent atom optics. By combining an interaction-driven quadrupole-mode excitation of a Bose-Einstein condensate (BEC) with a magnetic lens, we form a time-domain matter-wave lens system. The focus is tuned by the strength of the lensing potential and the oscillatory phase of the quadrupole mode. By placing the focus at infinity, we lower the total internal kinetic energy of a BEC comprising 101(37) thousand atoms in three dimensions to 3/2 kB·38-7+6 pK. Our method paves the way for free-fall experiments lasting ten or more seconds as envisioned for tests of fundamental physics and high-precision BEC interferometry, as well as opens up a new kinetic energy regime.

UR - http://www.scopus.com/inward/record.url?scp=85114386555&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.127.100401

DO - 10.1103/PhysRevLett.127.100401

M3 - Article

C2 - 34533345

AN - SCOPUS:85114386555

VL - 127

JO - Physical review letters

JF - Physical review letters

SN - 0031-9007

IS - 10

M1 - 100401

ER -