Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 757-797 |
Seitenumfang | 41 |
Fachzeitschrift | Annales de l'Institut Fourier |
Jahrgang | 71 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 12 Aug. 2021 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Annales de l'Institut Fourier, Jahrgang 71, Nr. 2, 12.08.2021, S. 757-797.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Cohomology of the moduli space of non-hyperelliptic genus four curves
AU - Fortuna, Mauro
PY - 2021/8/12
Y1 - 2021/8/12
N2 - We compute the intersection Betti numbers of the GIT model of the moduli space of Brill-Noether-Petri general curves of genus 4. This space was shown to be the final non-trivial log canonical model for the moduli space of stable genus four curves, under the Hassett-Keel program. The strategy of the cohomological computation relies on a general method developed by Kirwan to calculate the cohomology of GIT quotients of projective varieties, based on the equivariantly perfect stratification of the unstable points studied by Hesselink and others and a partial resolution of singularities.
AB - We compute the intersection Betti numbers of the GIT model of the moduli space of Brill-Noether-Petri general curves of genus 4. This space was shown to be the final non-trivial log canonical model for the moduli space of stable genus four curves, under the Hassett-Keel program. The strategy of the cohomological computation relies on a general method developed by Kirwan to calculate the cohomology of GIT quotients of projective varieties, based on the equivariantly perfect stratification of the unstable points studied by Hesselink and others and a partial resolution of singularities.
U2 - 10.5802/aif.3409
DO - 10.5802/aif.3409
M3 - Article
VL - 71
SP - 757
EP - 797
JO - Annales de l'Institut Fourier
JF - Annales de l'Institut Fourier
SN - 0373-0956
IS - 2
ER -