Cluster-based contextual recommendations

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Autoren

  • Kostas Stefanidis
  • Eirini Ntoutsi

Organisationseinheiten

Externe Organisationen

  • Foundation for Research & Technology - Hellas (FORTH)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des SammelwerksAdvances in Database Technology - EDBT 2016
Untertitel19th International Conference on Extending Database Technology, Proceedings
Herausgeber/-innenIoana Manolescu, Evaggelia Pitoura, Amelie Marian, Sofian Maabout, Letizia Tanca, Georgia Koutrika, Kostas Stefanidis
Seiten712-713
Seitenumfang2
ISBN (elektronisch)9783893180707
PublikationsstatusVeröffentlicht - 2016
Veranstaltung19th International Conference on Extending Database Technology, EDBT 2016 - Bordeaux, Frankreich
Dauer: 15 März 201618 März 2016

Publikationsreihe

NameAdvances in Database Technology - EDBT
Band2016-March
ISSN (elektronisch)2367-2005

Abstract

In this work, we address the problem of contextual recommendations by exploiting the concept of subspace clustering. Specifically, we pre-partition users that have rated subsets of data items similarly into clusters and we associate a context situation with each cluster. The cluster context is defined as any internally stored information that can be used to characterize the cluster members per se. Then, given a query context, we identify the clusters with the most similar context, and we use their members for making suggestions in a collaborative filtering manner.

ASJC Scopus Sachgebiete

Zitieren

Cluster-based contextual recommendations. / Stefanidis, Kostas; Ntoutsi, Eirini.
Advances in Database Technology - EDBT 2016: 19th International Conference on Extending Database Technology, Proceedings. Hrsg. / Ioana Manolescu; Evaggelia Pitoura; Amelie Marian; Sofian Maabout; Letizia Tanca; Georgia Koutrika; Kostas Stefanidis. 2016. S. 712-713 (Advances in Database Technology - EDBT; Band 2016-March).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Stefanidis, K & Ntoutsi, E 2016, Cluster-based contextual recommendations. in I Manolescu, E Pitoura, A Marian, S Maabout, L Tanca, G Koutrika & K Stefanidis (Hrsg.), Advances in Database Technology - EDBT 2016: 19th International Conference on Extending Database Technology, Proceedings. Advances in Database Technology - EDBT, Bd. 2016-March, S. 712-713, 19th International Conference on Extending Database Technology, EDBT 2016, Bordeaux, Frankreich, 15 März 2016. https://doi.org/10.5441/002/edbt.2016.100
Stefanidis, K., & Ntoutsi, E. (2016). Cluster-based contextual recommendations. In I. Manolescu, E. Pitoura, A. Marian, S. Maabout, L. Tanca, G. Koutrika, & K. Stefanidis (Hrsg.), Advances in Database Technology - EDBT 2016: 19th International Conference on Extending Database Technology, Proceedings (S. 712-713). (Advances in Database Technology - EDBT; Band 2016-March). https://doi.org/10.5441/002/edbt.2016.100
Stefanidis K, Ntoutsi E. Cluster-based contextual recommendations. in Manolescu I, Pitoura E, Marian A, Maabout S, Tanca L, Koutrika G, Stefanidis K, Hrsg., Advances in Database Technology - EDBT 2016: 19th International Conference on Extending Database Technology, Proceedings. 2016. S. 712-713. (Advances in Database Technology - EDBT). doi: 10.5441/002/edbt.2016.100
Stefanidis, Kostas ; Ntoutsi, Eirini. / Cluster-based contextual recommendations. Advances in Database Technology - EDBT 2016: 19th International Conference on Extending Database Technology, Proceedings. Hrsg. / Ioana Manolescu ; Evaggelia Pitoura ; Amelie Marian ; Sofian Maabout ; Letizia Tanca ; Georgia Koutrika ; Kostas Stefanidis. 2016. S. 712-713 (Advances in Database Technology - EDBT).
Download
@inproceedings{2c506eee7fa14128a7e38fa8be01bd23,
title = "Cluster-based contextual recommendations",
abstract = "In this work, we address the problem of contextual recommendations by exploiting the concept of subspace clustering. Specifically, we pre-partition users that have rated subsets of data items similarly into clusters and we associate a context situation with each cluster. The cluster context is defined as any internally stored information that can be used to characterize the cluster members per se. Then, given a query context, we identify the clusters with the most similar context, and we use their members for making suggestions in a collaborative filtering manner.",
author = "Kostas Stefanidis and Eirini Ntoutsi",
year = "2016",
doi = "10.5441/002/edbt.2016.100",
language = "English",
series = "Advances in Database Technology - EDBT",
pages = "712--713",
editor = "Ioana Manolescu and Evaggelia Pitoura and Amelie Marian and Sofian Maabout and Letizia Tanca and Georgia Koutrika and Kostas Stefanidis",
booktitle = "Advances in Database Technology - EDBT 2016",
note = "19th International Conference on Extending Database Technology, EDBT 2016 ; Conference date: 15-03-2016 Through 18-03-2016",

}

Download

TY - GEN

T1 - Cluster-based contextual recommendations

AU - Stefanidis, Kostas

AU - Ntoutsi, Eirini

PY - 2016

Y1 - 2016

N2 - In this work, we address the problem of contextual recommendations by exploiting the concept of subspace clustering. Specifically, we pre-partition users that have rated subsets of data items similarly into clusters and we associate a context situation with each cluster. The cluster context is defined as any internally stored information that can be used to characterize the cluster members per se. Then, given a query context, we identify the clusters with the most similar context, and we use their members for making suggestions in a collaborative filtering manner.

AB - In this work, we address the problem of contextual recommendations by exploiting the concept of subspace clustering. Specifically, we pre-partition users that have rated subsets of data items similarly into clusters and we associate a context situation with each cluster. The cluster context is defined as any internally stored information that can be used to characterize the cluster members per se. Then, given a query context, we identify the clusters with the most similar context, and we use their members for making suggestions in a collaborative filtering manner.

UR - http://www.scopus.com/inward/record.url?scp=85046691231&partnerID=8YFLogxK

U2 - 10.5441/002/edbt.2016.100

DO - 10.5441/002/edbt.2016.100

M3 - Conference contribution

AN - SCOPUS:85046691231

T3 - Advances in Database Technology - EDBT

SP - 712

EP - 713

BT - Advances in Database Technology - EDBT 2016

A2 - Manolescu, Ioana

A2 - Pitoura, Evaggelia

A2 - Marian, Amelie

A2 - Maabout, Sofian

A2 - Tanca, Letizia

A2 - Koutrika, Georgia

A2 - Stefanidis, Kostas

T2 - 19th International Conference on Extending Database Technology, EDBT 2016

Y2 - 15 March 2016 through 18 March 2016

ER -