Details
Originalsprache | Englisch |
---|---|
Qualifikation | Doctor rerum naturalium |
Gradverleihende Hochschule | |
Betreut von |
|
Datum der Verleihung des Grades | 15 Nov. 2018 |
Erscheinungsort | Hannover |
Publikationsstatus | Veröffentlicht - 2018 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Hannover, 2018. 93 S.
Publikation: Qualifikations-/Studienabschlussarbeit › Dissertation
}
TY - BOOK
T1 - Cl-rich amphiboles as record for hydrothermal processes at very high temperatures in the deep oceanic crust
T2 - Brine/rock interaction experiments and investigation on natural rocks
AU - Currin, Adrian
N1 - Doctoral thesis
PY - 2018
Y1 - 2018
N2 - Interactions between rock and high temperature seawater-derived fluids are recorded in hydrothermal veins and dykelets that cross-cut layered olivine gabbros deep in the plutonic section of the Samail Ophiolite, Wadi Wariyah, Sultanate of Oman. Here we present a study – using petrographic, microanalytical, isotopic, and structural methods – of amphiboles found in the aforementioned veins and dykelets, which show a conspicuous compositional variation from high-Ti magnesiohastingsite and pargasite via magnesiohornblende and edenite, to Cl-rich ferropargasite and hastingsite (with up to 5.4 wt% Cl) and actinolite. These minerals record a wide range of formation conditions from magmatic to hydrothermal at varying water/rock ratios and salinities, while the formation of super Cl-rich amphibole suggests the occurrence of phase separation, and 87Sr/86Sr and stable δ18O isotope analyses confirm the influence of a hydrothermal fluid in a rock-dominated environment. A parallel experimental study was conducted at hydrothermal (500 – 750 °C) and magmatic (900 °C) conditions at pressures of 2 kbar, and fO2 close to NNO, with an amphibole-containing natural olivine gabbro and saline fluid (6, 20 and 50 wt% NaCl). Results in subsolidus experiments demonstrate the growth of newly-formed amphibole with a wide range of compositions comparable to those seen in the lithologies sampled in Wadi Wariyah, and Cl-bearing amphiboles with Cl up to 0.47 wt. %. Our findings highlight the heterogeneities in fluid infiltration and Cl activity that account for the complexity of hydrothermal fluid/rock interactions in deep oceanic geological systems, providing insight into the subsolidus evolution of gabbro-hosted amphibole-rich veins in the presence of a seawater-derived fluid.
AB - Interactions between rock and high temperature seawater-derived fluids are recorded in hydrothermal veins and dykelets that cross-cut layered olivine gabbros deep in the plutonic section of the Samail Ophiolite, Wadi Wariyah, Sultanate of Oman. Here we present a study – using petrographic, microanalytical, isotopic, and structural methods – of amphiboles found in the aforementioned veins and dykelets, which show a conspicuous compositional variation from high-Ti magnesiohastingsite and pargasite via magnesiohornblende and edenite, to Cl-rich ferropargasite and hastingsite (with up to 5.4 wt% Cl) and actinolite. These minerals record a wide range of formation conditions from magmatic to hydrothermal at varying water/rock ratios and salinities, while the formation of super Cl-rich amphibole suggests the occurrence of phase separation, and 87Sr/86Sr and stable δ18O isotope analyses confirm the influence of a hydrothermal fluid in a rock-dominated environment. A parallel experimental study was conducted at hydrothermal (500 – 750 °C) and magmatic (900 °C) conditions at pressures of 2 kbar, and fO2 close to NNO, with an amphibole-containing natural olivine gabbro and saline fluid (6, 20 and 50 wt% NaCl). Results in subsolidus experiments demonstrate the growth of newly-formed amphibole with a wide range of compositions comparable to those seen in the lithologies sampled in Wadi Wariyah, and Cl-bearing amphiboles with Cl up to 0.47 wt. %. Our findings highlight the heterogeneities in fluid infiltration and Cl activity that account for the complexity of hydrothermal fluid/rock interactions in deep oceanic geological systems, providing insight into the subsolidus evolution of gabbro-hosted amphibole-rich veins in the presence of a seawater-derived fluid.
U2 - 10.15488/3985
DO - 10.15488/3985
M3 - Doctoral thesis
CY - Hannover
ER -