Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 175-193 |
Seitenumfang | 19 |
Fachzeitschrift | Interfaces and Free Boundaries |
Jahrgang | 6 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 30 Juni 2004 |
Abstract
The paper concerns a moving boundary problem for a coupled system of an elliptic and a parabolic boundary value problem. This system is applied to a model describing the growth of a homogeneous solid tumor in which the cell proliferation rate depends on the nutrient concentration only. For a large class of initial data the existence of a unique classical solution is shown.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Oberflächen und Grenzflächen
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Interfaces and Free Boundaries, Jahrgang 6, Nr. 2, 30.06.2004, S. 175-193.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Classical solutions to a moving boundary problem for an elliptic-parabolic system
AU - Escher, Joachim
PY - 2004/6/30
Y1 - 2004/6/30
N2 - The paper concerns a moving boundary problem for a coupled system of an elliptic and a parabolic boundary value problem. This system is applied to a model describing the growth of a homogeneous solid tumor in which the cell proliferation rate depends on the nutrient concentration only. For a large class of initial data the existence of a unique classical solution is shown.
AB - The paper concerns a moving boundary problem for a coupled system of an elliptic and a parabolic boundary value problem. This system is applied to a model describing the growth of a homogeneous solid tumor in which the cell proliferation rate depends on the nutrient concentration only. For a large class of initial data the existence of a unique classical solution is shown.
UR - http://www.scopus.com/inward/record.url?scp=3242743726&partnerID=8YFLogxK
U2 - 10.4171/IFB/96
DO - 10.4171/IFB/96
M3 - Article
AN - SCOPUS:3242743726
VL - 6
SP - 175
EP - 193
JO - Interfaces and Free Boundaries
JF - Interfaces and Free Boundaries
SN - 1463-9963
IS - 2
ER -