Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 421-445 |
Seitenumfang | 25 |
Fachzeitschrift | Nonlinear Analysis: Real World Applications |
Jahrgang | 46 |
Frühes Online-Datum | 23 Okt. 2018 |
Publikationsstatus | Veröffentlicht - Apr. 2019 |
Extern publiziert | Ja |
Abstract
Assuming that [Formula presented], [Formula presented] and [Formula presented], we prove global existence of classical solutions to a chemotaxis system slightly generalizing [Formula presented]in a bounded domain [Formula presented], with homogeneous Neumann boundary conditions and for widely arbitrary positive initial data. In the spatially one-dimensional setting, we prove global existence and, moreover, boundedness of the solution for any [Formula presented], [Formula presented], [Formula presented].
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Ingenieurwesen (insg.)
- Volkswirtschaftslehre, Ökonometrie und Finanzen (insg.)
- Mathematik (insg.)
- Computational Mathematics
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Nonlinear Analysis: Real World Applications, Jahrgang 46, 04.2019, S. 421-445.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption
AU - Lankeit, Elisa
AU - Lankeit, Johannes
PY - 2019/4
Y1 - 2019/4
N2 - Assuming that [Formula presented], [Formula presented] and [Formula presented], we prove global existence of classical solutions to a chemotaxis system slightly generalizing [Formula presented]in a bounded domain [Formula presented], with homogeneous Neumann boundary conditions and for widely arbitrary positive initial data. In the spatially one-dimensional setting, we prove global existence and, moreover, boundedness of the solution for any [Formula presented], [Formula presented], [Formula presented].
AB - Assuming that [Formula presented], [Formula presented] and [Formula presented], we prove global existence of classical solutions to a chemotaxis system slightly generalizing [Formula presented]in a bounded domain [Formula presented], with homogeneous Neumann boundary conditions and for widely arbitrary positive initial data. In the spatially one-dimensional setting, we prove global existence and, moreover, boundedness of the solution for any [Formula presented], [Formula presented], [Formula presented].
KW - Boundedness
KW - Chemotaxis
KW - Classical solution
KW - Global existence
KW - Logistic source
KW - Signal consumption
KW - Singular sensitivity
UR - http://www.scopus.com/inward/record.url?scp=85055193530&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1803.04006
DO - 10.48550/arXiv.1803.04006
M3 - Article
AN - SCOPUS:85055193530
VL - 46
SP - 421
EP - 445
JO - Nonlinear Analysis: Real World Applications
JF - Nonlinear Analysis: Real World Applications
SN - 1468-1218
ER -