Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Birational Geometry and Moduli Spaces |
Herausgeber/-innen | Elisabetta Colombo, Barbara Fantechi, Paola Frediani, Donatella Iacono, Rita Pardini |
Herausgeber (Verlag) | Springer International Publishing AG |
Seiten | 189-200 |
Seitenumfang | 12 |
Band | 39 |
ISBN (elektronisch) | 978-3-030-37114-2 |
ISBN (Print) | 978-3-030-37113-5 |
Publikationsstatus | Veröffentlicht - 26 Feb. 2020 |
Extern publiziert | Ja |
Publikationsreihe
Name | Springer INdAM Series |
---|---|
Band | 39 |
ISSN (Print) | 2281-518X |
ISSN (elektronisch) | 2281-5198 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Birational Geometry and Moduli Spaces. Hrsg. / Elisabetta Colombo; Barbara Fantechi; Paola Frediani; Donatella Iacono; Rita Pardini. Band 39 Springer International Publishing AG, 2020. S. 189-200 (Springer INdAM Series; Band 39).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Beitrag in Buch/Sammelwerk › Forschung › Peer-Review
}
TY - CHAP
T1 - Chern Numbers of Uniruled Threefolds
AU - Schreieder, Stefan
AU - Tasin, Luca
N1 - Funding information: We thank P. Cascini for many useful conversations on the topic of this manuscript. The first author is supported by DFG grant “Topologische Eigenschaften von Algebraischen Varietäten” (project nr. 416054549). The second author was supported by the DFG grant “Birational Methods in Topology and Hyperkähler Geometry” and is a member of the GNSAGA group of INdAM. Acknowledgements We thank P. Cascini for many useful conversations on the topic of this manuscript. The first author is supported by DFG grant “Topologische Eigenschaften von Algebraischen Varietäten” (project nr. 416054549). The second author was supported by the DFG grant “Birational Methods in Topology and Hyperkähler Geometry” and is a member of the GNSAGA group of INdAM.
PY - 2020/2/26
Y1 - 2020/2/26
N2 - In this paper we show that the Chern numbers of a smooth Mori fibre space in dimension three are bounded in terms of the underlying topological manifold. We also generalise a theorem of Cascini and the second named author on the boundedness of Chern numbers of certain threefolds to the case of negative Kodaira dimension.
AB - In this paper we show that the Chern numbers of a smooth Mori fibre space in dimension three are bounded in terms of the underlying topological manifold. We also generalise a theorem of Cascini and the second named author on the boundedness of Chern numbers of certain threefolds to the case of negative Kodaira dimension.
KW - Characteristic classes and numbers
KW - Minimal model program
KW - Mori fibre spaces
KW - Three-folds
KW - Topological properties of complex manifolds
UR - http://www.scopus.com/inward/record.url?scp=85080878300&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-37114-2_11
DO - 10.1007/978-3-030-37114-2_11
M3 - Contribution to book/anthology
AN - SCOPUS:85080878300
SN - 978-3-030-37113-5
VL - 39
T3 - Springer INdAM Series
SP - 189
EP - 200
BT - Birational Geometry and Moduli Spaces
A2 - Colombo, Elisabetta
A2 - Fantechi, Barbara
A2 - Frediani, Paola
A2 - Iacono, Donatella
A2 - Pardini, Rita
PB - Springer International Publishing AG
ER -