Chern Numbers of Uniruled Threefolds

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandBeitrag in Buch/SammelwerkForschungPeer-Review

Autoren

  • Stefan Schreieder
  • Luca Tasin

Externe Organisationen

  • Ludwig-Maximilians-Universität München (LMU)
  • Università degli Studi di Milano-Bicocca (UNIMIB)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des SammelwerksBirational Geometry and Moduli Spaces
Herausgeber/-innenElisabetta Colombo, Barbara Fantechi, Paola Frediani, Donatella Iacono, Rita Pardini
Herausgeber (Verlag)Springer International Publishing AG
Seiten189-200
Seitenumfang12
Band39
ISBN (elektronisch)978-3-030-37114-2
ISBN (Print)978-3-030-37113-5
PublikationsstatusVeröffentlicht - 26 Feb. 2020
Extern publiziertJa

Publikationsreihe

NameSpringer INdAM Series
Band39
ISSN (Print)2281-518X
ISSN (elektronisch)2281-5198

Abstract

In this paper we show that the Chern numbers of a smooth Mori fibre space in dimension three are bounded in terms of the underlying topological manifold. We also generalise a theorem of Cascini and the second named author on the boundedness of Chern numbers of certain threefolds to the case of negative Kodaira dimension.

ASJC Scopus Sachgebiete

Zitieren

Chern Numbers of Uniruled Threefolds. / Schreieder, Stefan; Tasin, Luca.
Birational Geometry and Moduli Spaces. Hrsg. / Elisabetta Colombo; Barbara Fantechi; Paola Frediani; Donatella Iacono; Rita Pardini. Band 39 Springer International Publishing AG, 2020. S. 189-200 (Springer INdAM Series; Band 39).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandBeitrag in Buch/SammelwerkForschungPeer-Review

Schreieder, S & Tasin, L 2020, Chern Numbers of Uniruled Threefolds. in E Colombo, B Fantechi, P Frediani, D Iacono & R Pardini (Hrsg.), Birational Geometry and Moduli Spaces. Bd. 39, Springer INdAM Series, Bd. 39, Springer International Publishing AG, S. 189-200. https://doi.org/10.1007/978-3-030-37114-2_11
Schreieder, S., & Tasin, L. (2020). Chern Numbers of Uniruled Threefolds. In E. Colombo, B. Fantechi, P. Frediani, D. Iacono, & R. Pardini (Hrsg.), Birational Geometry and Moduli Spaces (Band 39, S. 189-200). (Springer INdAM Series; Band 39). Springer International Publishing AG. https://doi.org/10.1007/978-3-030-37114-2_11
Schreieder S, Tasin L. Chern Numbers of Uniruled Threefolds. in Colombo E, Fantechi B, Frediani P, Iacono D, Pardini R, Hrsg., Birational Geometry and Moduli Spaces. Band 39. Springer International Publishing AG. 2020. S. 189-200. (Springer INdAM Series). doi: 10.1007/978-3-030-37114-2_11
Schreieder, Stefan ; Tasin, Luca. / Chern Numbers of Uniruled Threefolds. Birational Geometry and Moduli Spaces. Hrsg. / Elisabetta Colombo ; Barbara Fantechi ; Paola Frediani ; Donatella Iacono ; Rita Pardini. Band 39 Springer International Publishing AG, 2020. S. 189-200 (Springer INdAM Series).
Download
@inbook{95c56c68473f4914a451f3874e3bd7bc,
title = "Chern Numbers of Uniruled Threefolds",
abstract = "In this paper we show that the Chern numbers of a smooth Mori fibre space in dimension three are bounded in terms of the underlying topological manifold. We also generalise a theorem of Cascini and the second named author on the boundedness of Chern numbers of certain threefolds to the case of negative Kodaira dimension.",
keywords = "Characteristic classes and numbers, Minimal model program, Mori fibre spaces, Three-folds, Topological properties of complex manifolds",
author = "Stefan Schreieder and Luca Tasin",
note = "Funding information: We thank P. Cascini for many useful conversations on the topic of this manuscript. The first author is supported by DFG grant “Topologische Eigenschaften von Algebraischen Variet{\"a}ten” (project nr. 416054549). The second author was supported by the DFG grant “Birational Methods in Topology and Hyperk{\"a}hler Geometry” and is a member of the GNSAGA group of INdAM. Acknowledgements We thank P. Cascini for many useful conversations on the topic of this manuscript. The first author is supported by DFG grant “Topologische Eigenschaften von Algebraischen Variet{\"a}ten” (project nr. 416054549). The second author was supported by the DFG grant “Birational Methods in Topology and Hyperk{\"a}hler Geometry” and is a member of the GNSAGA group of INdAM.",
year = "2020",
month = feb,
day = "26",
doi = "10.1007/978-3-030-37114-2_11",
language = "English",
isbn = "978-3-030-37113-5",
volume = "39",
series = "Springer INdAM Series",
publisher = "Springer International Publishing AG",
pages = "189--200",
editor = "Elisabetta Colombo and Barbara Fantechi and Paola Frediani and Donatella Iacono and Rita Pardini",
booktitle = "Birational Geometry and Moduli Spaces",
address = "Switzerland",

}

Download

TY - CHAP

T1 - Chern Numbers of Uniruled Threefolds

AU - Schreieder, Stefan

AU - Tasin, Luca

N1 - Funding information: We thank P. Cascini for many useful conversations on the topic of this manuscript. The first author is supported by DFG grant “Topologische Eigenschaften von Algebraischen Varietäten” (project nr. 416054549). The second author was supported by the DFG grant “Birational Methods in Topology and Hyperkähler Geometry” and is a member of the GNSAGA group of INdAM. Acknowledgements We thank P. Cascini for many useful conversations on the topic of this manuscript. The first author is supported by DFG grant “Topologische Eigenschaften von Algebraischen Varietäten” (project nr. 416054549). The second author was supported by the DFG grant “Birational Methods in Topology and Hyperkähler Geometry” and is a member of the GNSAGA group of INdAM.

PY - 2020/2/26

Y1 - 2020/2/26

N2 - In this paper we show that the Chern numbers of a smooth Mori fibre space in dimension three are bounded in terms of the underlying topological manifold. We also generalise a theorem of Cascini and the second named author on the boundedness of Chern numbers of certain threefolds to the case of negative Kodaira dimension.

AB - In this paper we show that the Chern numbers of a smooth Mori fibre space in dimension three are bounded in terms of the underlying topological manifold. We also generalise a theorem of Cascini and the second named author on the boundedness of Chern numbers of certain threefolds to the case of negative Kodaira dimension.

KW - Characteristic classes and numbers

KW - Minimal model program

KW - Mori fibre spaces

KW - Three-folds

KW - Topological properties of complex manifolds

UR - http://www.scopus.com/inward/record.url?scp=85080878300&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-37114-2_11

DO - 10.1007/978-3-030-37114-2_11

M3 - Contribution to book/anthology

AN - SCOPUS:85080878300

SN - 978-3-030-37113-5

VL - 39

T3 - Springer INdAM Series

SP - 189

EP - 200

BT - Birational Geometry and Moduli Spaces

A2 - Colombo, Elisabetta

A2 - Fantechi, Barbara

A2 - Frediani, Paola

A2 - Iacono, Donatella

A2 - Pardini, Rita

PB - Springer International Publishing AG

ER -