Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 623–640 |
Seitenumfang | 18 |
Fachzeitschrift | European Journal of Mineralogy |
Jahrgang | 36 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - 23 Aug. 2024 |
Abstract
The diffusive exchange of major elements in Na-series tephrite–phonolite diffusion couples with compositions relevant to the Canary Islands magmatism was determined at 300 MPa and variable H 2O concentrations (0.3 wt % to 3.3 wt %), temperatures (1150 to 1300 °C), and fO 2 levels (NNO−1.5 to NNO+1.7). Composition-dependent effective binary diffusion coefficients were determined from concentration–distance profiles. Results show a wide range of diffusivities for different cations, consistently following the sequence Na Al K ≥ Mg = Fe = Ca > Si > Ti, with a mild diffusivity contrast (0.2–0.8 log units) between tephritic and phonolitic melts. Na is the fastest component, with diffusivities falling ∼ 1.0 log units above those of Si for any given condition. An anomalously fast Al diffusion is observed, with D Al falling ∼ 0.4 log units above Si and ∼ 0.6 log units below Na, suggesting a prevalence of Al–alkali coupling across our range of run conditions. The relationships between log D and H 2O content in melt for all cations in an intermediate composition are strongly nonlinear and can be fitted using an exponential function with a convergence in diffusion coefficients for different temperatures with increasing H 2O content. Thus, Arrhenius analyses result in a decrease in activation energies from 222–293 kJ mol −1 at 1.7 wt % H 2O to 48–112 kJ mol −1 at 3.0 wt % H 2O. These results provide new data on chemical interdiffusion in highly alkaline Na-rich melts and suggest that H 2O content plays a key role in increasing the chemical efficiency of magma mixing at low temperatures. The obtained dataset is used to test chemical controls of magma mixing in the El Abrigo ignimbrite, Tenerife, where banded pumices involving basanitic–tephritic to phonolitic magmas are common in several compositionally bimodal ignimbrite units.
ASJC Scopus Sachgebiete
- Erdkunde und Planetologie (insg.)
- Geochemie und Petrologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: European Journal of Mineralogy, Jahrgang 36, Nr. 4, 23.08.2024, S. 623–640.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Chemical interdiffusion between Na-series tephritic and phonolitic melts with different H2O content, temperature, and oxygen fugacity values
AU - González-García, Diego
AU - Pohl, Florian
AU - Marxer, Felix
AU - Krasheninnikov, Stepan
AU - Almeev, Renat
AU - Holtz, François
N1 - Publisher Copyright: Copyright: © 2024 Diego Gonza´lez-Garci´a et al.
PY - 2024/8/23
Y1 - 2024/8/23
N2 - The diffusive exchange of major elements in Na-series tephrite–phonolite diffusion couples with compositions relevant to the Canary Islands magmatism was determined at 300 MPa and variable H 2O concentrations (0.3 wt % to 3.3 wt %), temperatures (1150 to 1300 °C), and fO 2 levels (NNO−1.5 to NNO+1.7). Composition-dependent effective binary diffusion coefficients were determined from concentration–distance profiles. Results show a wide range of diffusivities for different cations, consistently following the sequence Na Al K ≥ Mg = Fe = Ca > Si > Ti, with a mild diffusivity contrast (0.2–0.8 log units) between tephritic and phonolitic melts. Na is the fastest component, with diffusivities falling ∼ 1.0 log units above those of Si for any given condition. An anomalously fast Al diffusion is observed, with D Al falling ∼ 0.4 log units above Si and ∼ 0.6 log units below Na, suggesting a prevalence of Al–alkali coupling across our range of run conditions. The relationships between log D and H 2O content in melt for all cations in an intermediate composition are strongly nonlinear and can be fitted using an exponential function with a convergence in diffusion coefficients for different temperatures with increasing H 2O content. Thus, Arrhenius analyses result in a decrease in activation energies from 222–293 kJ mol −1 at 1.7 wt % H 2O to 48–112 kJ mol −1 at 3.0 wt % H 2O. These results provide new data on chemical interdiffusion in highly alkaline Na-rich melts and suggest that H 2O content plays a key role in increasing the chemical efficiency of magma mixing at low temperatures. The obtained dataset is used to test chemical controls of magma mixing in the El Abrigo ignimbrite, Tenerife, where banded pumices involving basanitic–tephritic to phonolitic magmas are common in several compositionally bimodal ignimbrite units.
AB - The diffusive exchange of major elements in Na-series tephrite–phonolite diffusion couples with compositions relevant to the Canary Islands magmatism was determined at 300 MPa and variable H 2O concentrations (0.3 wt % to 3.3 wt %), temperatures (1150 to 1300 °C), and fO 2 levels (NNO−1.5 to NNO+1.7). Composition-dependent effective binary diffusion coefficients were determined from concentration–distance profiles. Results show a wide range of diffusivities for different cations, consistently following the sequence Na Al K ≥ Mg = Fe = Ca > Si > Ti, with a mild diffusivity contrast (0.2–0.8 log units) between tephritic and phonolitic melts. Na is the fastest component, with diffusivities falling ∼ 1.0 log units above those of Si for any given condition. An anomalously fast Al diffusion is observed, with D Al falling ∼ 0.4 log units above Si and ∼ 0.6 log units below Na, suggesting a prevalence of Al–alkali coupling across our range of run conditions. The relationships between log D and H 2O content in melt for all cations in an intermediate composition are strongly nonlinear and can be fitted using an exponential function with a convergence in diffusion coefficients for different temperatures with increasing H 2O content. Thus, Arrhenius analyses result in a decrease in activation energies from 222–293 kJ mol −1 at 1.7 wt % H 2O to 48–112 kJ mol −1 at 3.0 wt % H 2O. These results provide new data on chemical interdiffusion in highly alkaline Na-rich melts and suggest that H 2O content plays a key role in increasing the chemical efficiency of magma mixing at low temperatures. The obtained dataset is used to test chemical controls of magma mixing in the El Abrigo ignimbrite, Tenerife, where banded pumices involving basanitic–tephritic to phonolitic magmas are common in several compositionally bimodal ignimbrite units.
UR - http://www.scopus.com/inward/record.url?scp=85202181795&partnerID=8YFLogxK
U2 - 10.5194/ejm-36-623-2024
DO - 10.5194/ejm-36-623-2024
M3 - Article
VL - 36
SP - 623
EP - 640
JO - European Journal of Mineralogy
JF - European Journal of Mineralogy
SN - 1617-4011
IS - 4
ER -