Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 |
Untertitel | Proceedings |
Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers Inc. |
Seitenumfang | 1 |
ISBN (elektronisch) | 978-1-7281-0469-0, 978-1-7281-0470-6 |
Publikationsstatus | Veröffentlicht - Juni 2019 |
Veranstaltung | 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 - Munich, Deutschland Dauer: 23 Juni 2019 → 27 Juni 2019 |
Abstract
The measurement of few-fs-long deep-ultraviolet (DUV) pulses is one of the most demanding tasks for optical pulse characterization as these pulses are very much prone to material dispersion and space-time distortions. Therefore, the arrangements should be very carefully designed not to deteriorate the pulses in the course of the measurement. Furthermore, in this wavelength range the most popular nonlinearities used for the characterization such as second harmonic or sum frequency generation processes become unpractical or even unfeasible due to the very limited phase-matching or the even shorter wavelength of the resulted signal. Consequently, up to now most of short UV pulses were characterized by the FROG technique utilizing a degenerate four-wave mixing process, such as self diffraction [1] or transient grating formation [2]. Nevertheless, this technique suffers from rather bad signal to noise ratio and low sensitivity due to wave front splitting necessary for such method.
ASJC Scopus Sachgebiete
- Chemie (insg.)
- Spektroskopie
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Physik und Astronomie (insg.)
- Instrumentierung
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
- Informatik (insg.)
- Computernetzwerke und -kommunikation
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019: Proceedings. Institute of Electrical and Electronics Engineers Inc., 2019. 8871814.
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Characterization of 8 fs deep-UV pulses using XPW dispersion scan
AU - Tajalli, Ayhan
AU - Kalousdian, Thomas K.
AU - Kretschmar, Martin
AU - Kleinert, Sven
AU - Morgner, Uwe
AU - Nagy, Tamas
PY - 2019/6
Y1 - 2019/6
N2 - The measurement of few-fs-long deep-ultraviolet (DUV) pulses is one of the most demanding tasks for optical pulse characterization as these pulses are very much prone to material dispersion and space-time distortions. Therefore, the arrangements should be very carefully designed not to deteriorate the pulses in the course of the measurement. Furthermore, in this wavelength range the most popular nonlinearities used for the characterization such as second harmonic or sum frequency generation processes become unpractical or even unfeasible due to the very limited phase-matching or the even shorter wavelength of the resulted signal. Consequently, up to now most of short UV pulses were characterized by the FROG technique utilizing a degenerate four-wave mixing process, such as self diffraction [1] or transient grating formation [2]. Nevertheless, this technique suffers from rather bad signal to noise ratio and low sensitivity due to wave front splitting necessary for such method.
AB - The measurement of few-fs-long deep-ultraviolet (DUV) pulses is one of the most demanding tasks for optical pulse characterization as these pulses are very much prone to material dispersion and space-time distortions. Therefore, the arrangements should be very carefully designed not to deteriorate the pulses in the course of the measurement. Furthermore, in this wavelength range the most popular nonlinearities used for the characterization such as second harmonic or sum frequency generation processes become unpractical or even unfeasible due to the very limited phase-matching or the even shorter wavelength of the resulted signal. Consequently, up to now most of short UV pulses were characterized by the FROG technique utilizing a degenerate four-wave mixing process, such as self diffraction [1] or transient grating formation [2]. Nevertheless, this technique suffers from rather bad signal to noise ratio and low sensitivity due to wave front splitting necessary for such method.
UR - http://www.scopus.com/inward/record.url?scp=85074671139&partnerID=8YFLogxK
U2 - 10.1109/CLEOE-EQEC.2019.8871814
DO - 10.1109/CLEOE-EQEC.2019.8871814
M3 - Conference contribution
BT - 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
Y2 - 23 June 2019 through 27 June 2019
ER -