Characterization and digital aberration correction of a hyperspectral imaging system for plant disease detection

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Autoren

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des SammelwerksPhotonic Instrumentation Engineering X
Herausgeber/-innenLynda E. Busse, Yakov Soskind
Herausgeber (Verlag)SPIE
ISBN (elektronisch)9781510659612
PublikationsstatusVeröffentlicht - 8 März 2023
VeranstaltungSPIE Photonics West 2023 - Moscone Center, San Francisco, USA / Vereinigte Staaten
Dauer: 28 Jan. 20232 Feb. 2023
https://spie.org/conferences-and-exhibitions/photonics-west

Publikationsreihe

NameProceedings of SPIE - The International Society for Optical Engineering
Band12428
ISSN (Print)0277-786X
ISSN (elektronisch)1996-756X

Abstract

Hyperspectral imaging is a key technology for monitoring agricultural crops and vegetation. It can be used for health estimation and the early detection of disease symptoms in plants. This can help to reduce the use of pesticides by allowing targeted and early intervention. Cost-efficient hyperspectral imaging systems are necessary to meet the increasing demand for monitoring techniques for agricultural products. These systems usually suffer from sub-optimal image quality. Here we present a digital aberration correction for hyperspectral image data.

ASJC Scopus Sachgebiete

Zitieren

Characterization and digital aberration correction of a hyperspectral imaging system for plant disease detection. / Zabic, Miroslav; Jose, Lijin; Landes, Timm et al.
Photonic Instrumentation Engineering X. Hrsg. / Lynda E. Busse; Yakov Soskind. SPIE, 2023. 124280R (Proceedings of SPIE - The International Society for Optical Engineering; Band 12428).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Zabic, M, Jose, L, Landes, T, Fritz, J-M, Weisheit, I & Heinemann, D 2023, Characterization and digital aberration correction of a hyperspectral imaging system for plant disease detection. in LE Busse & Y Soskind (Hrsg.), Photonic Instrumentation Engineering X., 124280R, Proceedings of SPIE - The International Society for Optical Engineering, Bd. 12428, SPIE, SPIE Photonics West 2023, San Francisco, California, USA / Vereinigte Staaten, 28 Jan. 2023. https://doi.org/10.1117/12.2647833
Zabic, M., Jose, L., Landes, T., Fritz, J.-M., Weisheit, I., & Heinemann, D. (2023). Characterization and digital aberration correction of a hyperspectral imaging system for plant disease detection. In L. E. Busse, & Y. Soskind (Hrsg.), Photonic Instrumentation Engineering X Artikel 124280R (Proceedings of SPIE - The International Society for Optical Engineering; Band 12428). SPIE. https://doi.org/10.1117/12.2647833
Zabic M, Jose L, Landes T, Fritz JM, Weisheit I, Heinemann D. Characterization and digital aberration correction of a hyperspectral imaging system for plant disease detection. in Busse LE, Soskind Y, Hrsg., Photonic Instrumentation Engineering X. SPIE. 2023. 124280R. (Proceedings of SPIE - The International Society for Optical Engineering). doi: 10.1117/12.2647833
Zabic, Miroslav ; Jose, Lijin ; Landes, Timm et al. / Characterization and digital aberration correction of a hyperspectral imaging system for plant disease detection. Photonic Instrumentation Engineering X. Hrsg. / Lynda E. Busse ; Yakov Soskind. SPIE, 2023. (Proceedings of SPIE - The International Society for Optical Engineering).
Download
@inproceedings{207f106d16cc4435933e2a239f17b1d9,
title = "Characterization and digital aberration correction of a hyperspectral imaging system for plant disease detection",
abstract = "Hyperspectral imaging is a key technology for monitoring agricultural crops and vegetation. It can be used for health estimation and the early detection of disease symptoms in plants. This can help to reduce the use of pesticides by allowing targeted and early intervention. Cost-efficient hyperspectral imaging systems are necessary to meet the increasing demand for monitoring techniques for agricultural products. These systems usually suffer from sub-optimal image quality. Here we present a digital aberration correction for hyperspectral image data.",
keywords = "hyperspectral imaging, spatial resolution, deconvolution, plant disease detection, agriculture",
author = "Miroslav Zabic and Lijin Jose and Timm Landes and Jan-Michael Fritz and Inga Weisheit and Dag Heinemann",
year = "2023",
month = mar,
day = "8",
doi = "10.1117/12.2647833",
language = "English",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
publisher = "SPIE",
editor = "Busse, {Lynda E.} and Yakov Soskind",
booktitle = "Photonic Instrumentation Engineering X",
address = "United States",
note = "SPIE Photonics West 2023 ; Conference date: 28-01-2023 Through 02-02-2023",
url = "https://spie.org/conferences-and-exhibitions/photonics-west",

}

Download

TY - GEN

T1 - Characterization and digital aberration correction of a hyperspectral imaging system for plant disease detection

AU - Zabic, Miroslav

AU - Jose, Lijin

AU - Landes, Timm

AU - Fritz, Jan-Michael

AU - Weisheit, Inga

AU - Heinemann, Dag

PY - 2023/3/8

Y1 - 2023/3/8

N2 - Hyperspectral imaging is a key technology for monitoring agricultural crops and vegetation. It can be used for health estimation and the early detection of disease symptoms in plants. This can help to reduce the use of pesticides by allowing targeted and early intervention. Cost-efficient hyperspectral imaging systems are necessary to meet the increasing demand for monitoring techniques for agricultural products. These systems usually suffer from sub-optimal image quality. Here we present a digital aberration correction for hyperspectral image data.

AB - Hyperspectral imaging is a key technology for monitoring agricultural crops and vegetation. It can be used for health estimation and the early detection of disease symptoms in plants. This can help to reduce the use of pesticides by allowing targeted and early intervention. Cost-efficient hyperspectral imaging systems are necessary to meet the increasing demand for monitoring techniques for agricultural products. These systems usually suffer from sub-optimal image quality. Here we present a digital aberration correction for hyperspectral image data.

KW - hyperspectral imaging

KW - spatial resolution

KW - deconvolution

KW - plant disease detection

KW - agriculture

UR - http://www.scopus.com/inward/record.url?scp=85159777074&partnerID=8YFLogxK

U2 - 10.1117/12.2647833

DO - 10.1117/12.2647833

M3 - Conference contribution

T3 - Proceedings of SPIE - The International Society for Optical Engineering

BT - Photonic Instrumentation Engineering X

A2 - Busse, Lynda E.

A2 - Soskind, Yakov

PB - SPIE

T2 - SPIE Photonics West 2023

Y2 - 28 January 2023 through 2 February 2023

ER -

Von denselben Autoren