Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 123-135 |
Seitenumfang | 13 |
Fachzeitschrift | Advances in space research |
Jahrgang | 50 |
Ausgabenummer | 1 |
Frühes Online-Datum | 17 März 2012 |
Publikationsstatus | Veröffentlicht - 1 Juli 2012 |
Abstract
For almost 10 years, the Gravity Recovery and Climate Experiment (GRACE) has provided information about the Earth gravity field with unprecedented accuracy. Efforts are ongoing to approach the GRACE baseline accuracy as there still remains an order of magnitude between the present error level of the gravity field solutions and the GRACE baseline. At the current level of accuracy, thorough investigation of sensor related effects is necessary as they are one of the potential contributors to the error budget. In the science mode operations, the twin satellites are kept precisely pointed with their KBR antennas towards each other. It is the task of the onboard attitude and orbit control system (AOCS) to keep the satellites in the required formation. We analyzed long time series of the inter-satellite pointing variations as they reflect the AOCS performance and characteristics. We present significant systematic effects in the inter-satellite pointing and discuss their possible sources. Prominent features are especially related to the magnetic torquer characteristics, star cameras' performance and KBR antenna calibration parameters. The relation between the magnetic torquer attitude control and the Earth magnetic field, impact of the different performance of the two star camera heads on the attitude control and the features due to uncertainties in the calibration parameters relating the star camera frame to K-frame are discussed in detail. Proper understanding of these effects will help to reduce their impact on the science data and subsequently increase the accuracy of the gravity field solutions. Moreover, understanding the complexity of the onboard system is essential not only for increasing the accuracy of the GRACE data but also for the development of the future gravity field satellite missions.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Luft- und Raumfahrttechnik
- Physik und Astronomie (insg.)
- Astronomie und Astrophysik
- Erdkunde und Planetologie (insg.)
- Geophysik
- Erdkunde und Planetologie (insg.)
- Atmosphärenwissenschaften
- Erdkunde und Planetologie (insg.)
- Astronomie und Planetologie
- Erdkunde und Planetologie (insg.)
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Advances in space research, Jahrgang 50, Nr. 1, 01.07.2012, S. 123-135.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Characteristics and accuracies of the GRACE inter-satellite pointing
AU - Bandikova, Tamara
AU - Flury, Jakob
AU - Ko, Ung Dai
N1 - Funding Information: This project is funded by the Centre for Quantum Engineering and Space-Time Research (QUEST) in Hannover .
PY - 2012/7/1
Y1 - 2012/7/1
N2 - For almost 10 years, the Gravity Recovery and Climate Experiment (GRACE) has provided information about the Earth gravity field with unprecedented accuracy. Efforts are ongoing to approach the GRACE baseline accuracy as there still remains an order of magnitude between the present error level of the gravity field solutions and the GRACE baseline. At the current level of accuracy, thorough investigation of sensor related effects is necessary as they are one of the potential contributors to the error budget. In the science mode operations, the twin satellites are kept precisely pointed with their KBR antennas towards each other. It is the task of the onboard attitude and orbit control system (AOCS) to keep the satellites in the required formation. We analyzed long time series of the inter-satellite pointing variations as they reflect the AOCS performance and characteristics. We present significant systematic effects in the inter-satellite pointing and discuss their possible sources. Prominent features are especially related to the magnetic torquer characteristics, star cameras' performance and KBR antenna calibration parameters. The relation between the magnetic torquer attitude control and the Earth magnetic field, impact of the different performance of the two star camera heads on the attitude control and the features due to uncertainties in the calibration parameters relating the star camera frame to K-frame are discussed in detail. Proper understanding of these effects will help to reduce their impact on the science data and subsequently increase the accuracy of the gravity field solutions. Moreover, understanding the complexity of the onboard system is essential not only for increasing the accuracy of the GRACE data but also for the development of the future gravity field satellite missions.
AB - For almost 10 years, the Gravity Recovery and Climate Experiment (GRACE) has provided information about the Earth gravity field with unprecedented accuracy. Efforts are ongoing to approach the GRACE baseline accuracy as there still remains an order of magnitude between the present error level of the gravity field solutions and the GRACE baseline. At the current level of accuracy, thorough investigation of sensor related effects is necessary as they are one of the potential contributors to the error budget. In the science mode operations, the twin satellites are kept precisely pointed with their KBR antennas towards each other. It is the task of the onboard attitude and orbit control system (AOCS) to keep the satellites in the required formation. We analyzed long time series of the inter-satellite pointing variations as they reflect the AOCS performance and characteristics. We present significant systematic effects in the inter-satellite pointing and discuss their possible sources. Prominent features are especially related to the magnetic torquer characteristics, star cameras' performance and KBR antenna calibration parameters. The relation between the magnetic torquer attitude control and the Earth magnetic field, impact of the different performance of the two star camera heads on the attitude control and the features due to uncertainties in the calibration parameters relating the star camera frame to K-frame are discussed in detail. Proper understanding of these effects will help to reduce their impact on the science data and subsequently increase the accuracy of the gravity field solutions. Moreover, understanding the complexity of the onboard system is essential not only for increasing the accuracy of the GRACE data but also for the development of the future gravity field satellite missions.
KW - GRACE
KW - Gravity field satellite mission
KW - Inter-satellite pointing
KW - Magnetic torquers
KW - Sensor analysis
KW - Star cameras
UR - http://www.scopus.com/inward/record.url?scp=84861202115&partnerID=8YFLogxK
U2 - 10.1016/j.asr.2012.03.011
DO - 10.1016/j.asr.2012.03.011
M3 - Article
AN - SCOPUS:84861202115
VL - 50
SP - 123
EP - 135
JO - Advances in space research
JF - Advances in space research
SN - 0273-1177
IS - 1
ER -