Characteristic polyhedra of singularities without completion: Part II

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Vincent Cossart
  • Bernd Schober

Organisationseinheiten

Externe Organisationen

  • Universität Paris-Saclay
  • Carl von Ossietzky Universität Oldenburg
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)351-392
Seitenumfang42
FachzeitschriftCollectanea mathematica
Jahrgang72
Ausgabenummer2
Frühes Online-Datum22 Juni 2020
PublikationsstatusVeröffentlicht - Mai 2021

Abstract

Hironaka’s characteristic polyhedron is an important combinatorial object reflecting the local nature of a singularity. We prove that it can be determined without passing to the completion if the local ring is a G-ring and if additionally either it is Henselian, or a certain polynomiality condition (Pol) holds, or a mild condition (*) on the singularity holds. For example, the latter is fulfilled if the residue field is perfect.

Zitieren

Characteristic polyhedra of singularities without completion: Part II. / Cossart, Vincent; Schober, Bernd.
in: Collectanea mathematica, Jahrgang 72, Nr. 2, 05.2021, S. 351-392.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Cossart V, Schober B. Characteristic polyhedra of singularities without completion: Part II. Collectanea mathematica. 2021 Mai;72(2):351-392. Epub 2020 Jun 22. doi: 10.1007/s13348-020-00291-5, 10.1007/s13348-021-00326-5
Cossart, Vincent ; Schober, Bernd. / Characteristic polyhedra of singularities without completion : Part II. in: Collectanea mathematica. 2021 ; Jahrgang 72, Nr. 2. S. 351-392.
Download
@article{a41d4f195bee483189470cfe3d575587,
title = "Characteristic polyhedra of singularities without completion: Part II",
abstract = "Hironaka{\textquoteright}s characteristic polyhedron is an important combinatorial object reflecting the local nature of a singularity. We prove that it can be determined without passing to the completion if the local ring is a G-ring and if additionally either it is Henselian, or a certain polynomiality condition (Pol) holds, or a mild condition (*) on the singularity holds. For example, the latter is fulfilled if the residue field is perfect.",
author = "Vincent Cossart and Bernd Schober",
note = "Funding information: The second named author was supported by Research Fellowships of the Deutsche Forschungsgemeinschaft (SCHO 1595/1-1 and SCHO 1595/2-1).",
year = "2021",
month = may,
doi = "10.1007/s13348-020-00291-5",
language = "English",
volume = "72",
pages = "351--392",
journal = "Collectanea mathematica",
issn = "0010-0757",
publisher = "Springer-Verlag Italia",
number = "2",

}

Download

TY - JOUR

T1 - Characteristic polyhedra of singularities without completion

T2 - Part II

AU - Cossart, Vincent

AU - Schober, Bernd

N1 - Funding information: The second named author was supported by Research Fellowships of the Deutsche Forschungsgemeinschaft (SCHO 1595/1-1 and SCHO 1595/2-1).

PY - 2021/5

Y1 - 2021/5

N2 - Hironaka’s characteristic polyhedron is an important combinatorial object reflecting the local nature of a singularity. We prove that it can be determined without passing to the completion if the local ring is a G-ring and if additionally either it is Henselian, or a certain polynomiality condition (Pol) holds, or a mild condition (*) on the singularity holds. For example, the latter is fulfilled if the residue field is perfect.

AB - Hironaka’s characteristic polyhedron is an important combinatorial object reflecting the local nature of a singularity. We prove that it can be determined without passing to the completion if the local ring is a G-ring and if additionally either it is Henselian, or a certain polynomiality condition (Pol) holds, or a mild condition (*) on the singularity holds. For example, the latter is fulfilled if the residue field is perfect.

UR - http://www.scopus.com/inward/record.url?scp=85086771116&partnerID=8YFLogxK

U2 - 10.1007/s13348-020-00291-5

DO - 10.1007/s13348-020-00291-5

M3 - Article

AN - SCOPUS:85086771116

VL - 72

SP - 351

EP - 392

JO - Collectanea mathematica

JF - Collectanea mathematica

SN - 0010-0757

IS - 2

ER -