Details
Originalsprache | Englisch |
---|---|
Qualifikation | Doctor rerum naturalium |
Gradverleihende Hochschule | |
Betreut von |
|
Datum der Verleihung des Grades | 19 Sept. 2023 |
Erscheinungsort | Hannover |
Publikationsstatus | Veröffentlicht - 2023 |
Abstract
Diese Arbeit untersucht die grundlegenden Prinzipien von CQNC sowie die möglichen Vorteile einer Modifikation der Dynamik des optomechanischen Systems durch Verwendung eines zusätzlichen Strahles. Die theoretische Betrachtung legt nahe, dass Modifikationen, hervorgerufen durch den zusätzlichen Strahl, nur im Bereich des aufgelösten Seitenbandes (resolved sideband regime) vorteilhaft sein können. Weitere Untersuchungen sind aufgrund des umfangreichen Parameterbereichs erforderlich. Früheren CQNC Studien zeigten, dass selbst ohne einen zusätzlichen Stahl, eine Unterdrückung des quantenmechanischen Rückwirkungsrauschens innerhalb eines CQNC-Experiments möglich ist.
Der experimentelle Aufbau des CQNC Experiments beinhaltet einen Schrottrausch-begrenzten Laserstrahl. Um einen solchen Strahl zu erzeugen, wird eine Filterkavität verwendet, um das Amplitudenrauschen des Lasers zu unterdrücken. Die Messergebnisse zeigen, dass das Amplitudenrauschen des Laserstrahles, aufgrund der Filterkavität, oberhalb einer Frequenz von 1 MHz bei einer Leistung von 1 mW schrottrauschbegrenzt ist. Daher ist diese Filterkavität zur Unterdrückung von Amplitudenrauschen hinsichtlich der Anforderung für ein CQNC Experiment geeignet.
Das Hauptaugenmerk dieser Arbeit liegt auf der Charakterisierung und Entwicklung des optomechanischen Systems, da dieser ein Teilsystem des CQNC-Experiments ist. Die Arbeit konzentriert sich darauf, eine hohe optomechanische Kopplungsstärke zwischen Licht und einer Siliziumnitridmembran als mechanischem Oszillator zu erreichen. Aus diesem Grund wurden experimentelle Untersuchungen durchgeführt, um die Position der Membran im optomechanischen System zu bestimmen, an der die Kopplungsstärke am höchsten ist. Messungen bei kryogenen Temperaturen, die für die Begrenzung des quantenmechanischen Rückwirkungsrauschens erforderlich sind, konnten aufgrund technischer Herausforderungen nicht umgesetzt werden. Der Betrieb des optomechanischen Oszillators in einer kryogenen Umgebung bleibt daher eine offene Aufgabe.
Dennoch wurden zwei Experimente mit dem optomechanischen System erfolgreich bei niedrigem Druck (\SI{e-7}{\milli\bar}) und Raumtemperatur durchgeführt. Beide Experimente, das eine Experiment zur optomechanisch induzierten Transparenz (OMIT) und das andere Experiment zur dynamischen Rückwirkung (DBA), lieferten relevante Werte. Die Messungen zeigen jedoch, dass die für die Experimente verwendete Membran aufgrund ihrer Gütefaktoren und Kopplungsstärke nicht für ein CQNC-Experiment geeignet ist. Um die Genauigkeit der Messung von Gütefaktoren zu verbessern und eine höhere Empfindlichkeit zu erreichen, wird für zukünftige Untersuchungen der Membranen eine Ring-Down-Messung empfohlen. Außerdem müssen, sobald Messungen bei kryogenen Temperaturen möglich sind, Techniken zur genauen Temperaturmessung etabliert werden.
Zusammenfassend hat das entwickelte optomechanische System das Potenzial, ein Teilsystem für ein CQNC-Experiment zu werden, sofern optomechanische Oszillatoren mit höheren Gütefaktoren verwendet werden und der Betrieb bei kryogenen Temperaturen möglich wird.
Weiterführende Charakterisierungen und Untersuchungen des Oszillators mit positiver Masse werden durchgeführt, um die Umsetzung von all-optischem CQNC voranzutreiben.
\textbf{Schlagwörter:} kohärente Quantenrauschunterdrückung (CQNC), Standard-Quantenlimit (SQL), optomechanisch induzierte Transparenz (OMIT), dynamische Rückwirkung (DBA), Quantenrückwirkungkooperativität
Schlagwörter
- kohärente Quantenrauschunterdrückung (CQNC), StandardQuantenlimit (SQL), optomechanisch induzierte Transparenz (OMIT), dynamische Rückwirkung (DBA), Quantenrückwirkungkooperativität
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Hannover, 2023. 161 S.
Publikation: Qualifikations-/Studienabschlussarbeit › Dissertation
}
TY - BOOK
T1 - Characterisation and integration of an optomechanical system for an all-optical CQNC experiment
AU - Schulte, Bernd Wolfgang
PY - 2023
Y1 - 2023
N2 - This thesis presents the development and characterisation of an optomechanical system (OMS) with the aim to be part of an all-optical coherent quantum noise cancellation scheme (CQNC), as proposed by Tsang & Caves in 2010. The goal of such a CQNC experiment is to enhance the sensitivity of conventional optomechanical displacement and force detectors. Their sensitivity limit is described by a trade-off between shot noise and quantum backaction noise, forming the standard quantum limit of interferometry. This thesis explores the fundamental principles of CQNC and investigates the potential benefits of modifying the mechanical oscillator’s dynamics in the OMS through dynamical backaction using a second beam. The findings suggest that such modifications may be advantageous in the resolved sideband regime. Further investigations are needed due to the vast parameter space involved. However, as shown in previous studies and recapitulated within this thesis, even without a cooling beam quantum backaction noise suppression within an all-optical CQNC experiment is feasible. The experimental setup for an all-optical CQNC involves a shot noise limited probe beam. To achieve this condition, a filter cavity is used to suppress laser amplitude noise. The results indicate that the amplitude noise in transmission is shot noise limited above frequencies of 1 MHz at a power of 1 mW, making this stabilisation scheme suitable for a CQNC experiment. The main focus of this thesis is the development and characterisation of the optomechanical system, one subsystem of the CQNC experiment. The work focused on achieving and measuring a high optomechanical coupling strength (g) between light and a silicon nitride membrane representing the mechanical oscillator. Thus, experimental investigations are conducted to determine the optimal position within the optomechanical system where the coupling strength is highest. However, measurements at cryogenic temperatures, necessary for quantum backaction noise limitation, could not be performed due to technical challenges. The operation of the optomechanical oscillator in a cryogenic environment remains a pending task. Nevertheless, two experiments of the optomechanical system are successfully performed at room temperature and low pressure (10−7 mbar). Both experiments, an optomechanically induced transparency (OMIT) experiment and a dynamical backaction (DBA) experiment provide relevant values. The measurements reveal that the membrane used in the experiments is unsuitable for all-optical CQNC due to its quality factors and coupling strength, which do not meet the quantum backaction cooperativity requirement. To improve precision in extracting quality factors and achieve higher sensitivity, a ring-down measurement is recommended for future investigations. Also, once measurements at cryogenic temperature are feasible, techniques like displacement calibration and quantum noise thermometry for accurate temperature measurements have to be established. In conclusion, the developed optomechanical system holds promise for realising all-optical CQNC once optomechanical oscillators with higher quality factors are used, and cryogenic temperature operation becomes feasible. The thesis also touches upon strategies to surpass the standard quantum limit (SQL) and cancel quantum backaction noise using an all-optical CQNC scheme with an effective negative mass oscillator. Further characterisation and investigation of the positive mass oscillator are conducted to advance the implementation of all-optical CQNC.
AB - This thesis presents the development and characterisation of an optomechanical system (OMS) with the aim to be part of an all-optical coherent quantum noise cancellation scheme (CQNC), as proposed by Tsang & Caves in 2010. The goal of such a CQNC experiment is to enhance the sensitivity of conventional optomechanical displacement and force detectors. Their sensitivity limit is described by a trade-off between shot noise and quantum backaction noise, forming the standard quantum limit of interferometry. This thesis explores the fundamental principles of CQNC and investigates the potential benefits of modifying the mechanical oscillator’s dynamics in the OMS through dynamical backaction using a second beam. The findings suggest that such modifications may be advantageous in the resolved sideband regime. Further investigations are needed due to the vast parameter space involved. However, as shown in previous studies and recapitulated within this thesis, even without a cooling beam quantum backaction noise suppression within an all-optical CQNC experiment is feasible. The experimental setup for an all-optical CQNC involves a shot noise limited probe beam. To achieve this condition, a filter cavity is used to suppress laser amplitude noise. The results indicate that the amplitude noise in transmission is shot noise limited above frequencies of 1 MHz at a power of 1 mW, making this stabilisation scheme suitable for a CQNC experiment. The main focus of this thesis is the development and characterisation of the optomechanical system, one subsystem of the CQNC experiment. The work focused on achieving and measuring a high optomechanical coupling strength (g) between light and a silicon nitride membrane representing the mechanical oscillator. Thus, experimental investigations are conducted to determine the optimal position within the optomechanical system where the coupling strength is highest. However, measurements at cryogenic temperatures, necessary for quantum backaction noise limitation, could not be performed due to technical challenges. The operation of the optomechanical oscillator in a cryogenic environment remains a pending task. Nevertheless, two experiments of the optomechanical system are successfully performed at room temperature and low pressure (10−7 mbar). Both experiments, an optomechanically induced transparency (OMIT) experiment and a dynamical backaction (DBA) experiment provide relevant values. The measurements reveal that the membrane used in the experiments is unsuitable for all-optical CQNC due to its quality factors and coupling strength, which do not meet the quantum backaction cooperativity requirement. To improve precision in extracting quality factors and achieve higher sensitivity, a ring-down measurement is recommended for future investigations. Also, once measurements at cryogenic temperature are feasible, techniques like displacement calibration and quantum noise thermometry for accurate temperature measurements have to be established. In conclusion, the developed optomechanical system holds promise for realising all-optical CQNC once optomechanical oscillators with higher quality factors are used, and cryogenic temperature operation becomes feasible. The thesis also touches upon strategies to surpass the standard quantum limit (SQL) and cancel quantum backaction noise using an all-optical CQNC scheme with an effective negative mass oscillator. Further characterisation and investigation of the positive mass oscillator are conducted to advance the implementation of all-optical CQNC.
KW - kohärente Quantenrauschunterdrückung (CQNC)
KW - StandardQuantenlimit (SQL)
KW - optomechanisch induzierte Transparenz (OMIT)
KW - dynamische Rückwirkung (DBA)
KW - Quantenrückwirkungkooperativität
KW - coherent quantum-noise cancellation
KW - standard quantum limit
KW - optomechanical induced transparency
KW - dynamical backaction
KW - quantum backaction cooperativity
U2 - 10.15488/15472
DO - 10.15488/15472
M3 - Doctoral thesis
CY - Hannover
ER -