Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 559-575 |
Seitenumfang | 17 |
Fachzeitschrift | Mineralium deposita |
Jahrgang | 59 |
Ausgabenummer | 3 |
Frühes Online-Datum | 20 Okt. 2023 |
Publikationsstatus | Veröffentlicht - März 2024 |
Abstract
In this work, we investigated in situ isotopic compositions of antimony (Sb) minerals from two substages of the ore deposits near Pezinok (Slovakia). The δ123Sb values of the primary Sb minerals range from −0.4 and +0.8‰ and increase progressively along the precipitation sequence. In the substage II, the early-formed gudmundite (FeSbS) shows in all sections the lowest δ123Sb values, followed by berthierite (FeSb2S4), stibnite (Sb2S3), and valentinite (Sb2O3) with the heaviest δ123Sb values. A similar trend was observed for the substage III, from the initially-formed stibnite, followed by kermesite (Sb2S2O), valentinite, senarmontite (both Sb2O3), and schafarzikite (FeSb2O4). The evolution can be rationalized by a Rayleigh fractionation model with a starting δ123Sb value in the fluid of +0.3‰, applying the same mineral-fluid fractionation factor to all minerals. Thus, the texturally observed order of mineralization is confirmed by diminishing trace element contents and heavier δ123Sb values in successively crystallized Sb minerals. Antimony in substage III was likely supplied from the oxidative dissolution of stibnite that formed earlier during substage II. The data interpretation, although limited by the lack of reliable mineral-fluid fractionation factors, implies that Sb precipitation within each substage occurred from an episodic metal precipitation, likely associated with a similar Sb isotope fractionation between fluid and all investigated Sb minerals. Large isotopic variations, induced by precipitation from a fluid as a response to temperature decrease, may be an obstacle in deciphering the metal source in hydrothermal ore deposits. However, Sb isotopes appear to be an excellent instrument to enhance our understanding on how hydrothermal systems operate.
ASJC Scopus Sachgebiete
- Erdkunde und Planetologie (insg.)
- Geophysik
- Erdkunde und Planetologie (insg.)
- Geochemie und Petrologie
- Erdkunde und Planetologie (insg.)
- Ökonomische Geologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mineralium deposita, Jahrgang 59, Nr. 3, 03.2024, S. 559-575.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Changes in antimony isotopic composition as a tracer of hydrothermal fluid evolution at the Sb deposits in Pezinok (Slovakia)
AU - Kaufmann, Andreas B.
AU - Lazarov, Marina
AU - Weyer, Stefan
AU - Števko, Martin
AU - Kiefer, Stefan
AU - Majzlan, Juraj
N1 - Funding Information: Open Access funding enabled and organized by Projekt DEAL. This study was financially supported by the Deutsche Forschungsgemeinschaft (grant LA 3392/3-1 and MA 3927/32-1) which is gratefully acknowledged. M.Š. is thankful for funding from the grant APVV-22-0041.
PY - 2024/3
Y1 - 2024/3
N2 - In this work, we investigated in situ isotopic compositions of antimony (Sb) minerals from two substages of the ore deposits near Pezinok (Slovakia). The δ123Sb values of the primary Sb minerals range from −0.4 and +0.8‰ and increase progressively along the precipitation sequence. In the substage II, the early-formed gudmundite (FeSbS) shows in all sections the lowest δ123Sb values, followed by berthierite (FeSb2S4), stibnite (Sb2S3), and valentinite (Sb2O3) with the heaviest δ123Sb values. A similar trend was observed for the substage III, from the initially-formed stibnite, followed by kermesite (Sb2S2O), valentinite, senarmontite (both Sb2O3), and schafarzikite (FeSb2O4). The evolution can be rationalized by a Rayleigh fractionation model with a starting δ123Sb value in the fluid of +0.3‰, applying the same mineral-fluid fractionation factor to all minerals. Thus, the texturally observed order of mineralization is confirmed by diminishing trace element contents and heavier δ123Sb values in successively crystallized Sb minerals. Antimony in substage III was likely supplied from the oxidative dissolution of stibnite that formed earlier during substage II. The data interpretation, although limited by the lack of reliable mineral-fluid fractionation factors, implies that Sb precipitation within each substage occurred from an episodic metal precipitation, likely associated with a similar Sb isotope fractionation between fluid and all investigated Sb minerals. Large isotopic variations, induced by precipitation from a fluid as a response to temperature decrease, may be an obstacle in deciphering the metal source in hydrothermal ore deposits. However, Sb isotopes appear to be an excellent instrument to enhance our understanding on how hydrothermal systems operate.
AB - In this work, we investigated in situ isotopic compositions of antimony (Sb) minerals from two substages of the ore deposits near Pezinok (Slovakia). The δ123Sb values of the primary Sb minerals range from −0.4 and +0.8‰ and increase progressively along the precipitation sequence. In the substage II, the early-formed gudmundite (FeSbS) shows in all sections the lowest δ123Sb values, followed by berthierite (FeSb2S4), stibnite (Sb2S3), and valentinite (Sb2O3) with the heaviest δ123Sb values. A similar trend was observed for the substage III, from the initially-formed stibnite, followed by kermesite (Sb2S2O), valentinite, senarmontite (both Sb2O3), and schafarzikite (FeSb2O4). The evolution can be rationalized by a Rayleigh fractionation model with a starting δ123Sb value in the fluid of +0.3‰, applying the same mineral-fluid fractionation factor to all minerals. Thus, the texturally observed order of mineralization is confirmed by diminishing trace element contents and heavier δ123Sb values in successively crystallized Sb minerals. Antimony in substage III was likely supplied from the oxidative dissolution of stibnite that formed earlier during substage II. The data interpretation, although limited by the lack of reliable mineral-fluid fractionation factors, implies that Sb precipitation within each substage occurred from an episodic metal precipitation, likely associated with a similar Sb isotope fractionation between fluid and all investigated Sb minerals. Large isotopic variations, induced by precipitation from a fluid as a response to temperature decrease, may be an obstacle in deciphering the metal source in hydrothermal ore deposits. However, Sb isotopes appear to be an excellent instrument to enhance our understanding on how hydrothermal systems operate.
KW - Antimony isotopes
KW - Ore deposit
KW - Pezinok
KW - Precipitation sequence
KW - Rayleigh fractionation
KW - Sb sulfides and oxides
UR - http://www.scopus.com/inward/record.url?scp=85174530628&partnerID=8YFLogxK
U2 - 10.1007/s00126-023-01222-7
DO - 10.1007/s00126-023-01222-7
M3 - Article
AN - SCOPUS:85174530628
VL - 59
SP - 559
EP - 575
JO - Mineralium deposita
JF - Mineralium deposita
SN - 0026-4598
IS - 3
ER -