Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 609–627 |
Seitenumfang | 19 |
Fachzeitschrift | PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science |
Jahrgang | 92 |
Ausgabenummer | 5 |
Frühes Online-Datum | 16 Sept. 2024 |
Publikationsstatus | Veröffentlicht - Okt. 2024 |
Abstract
ASJC Scopus Sachgebiete
- Sozialwissenschaften (insg.)
- Geografie, Planung und Entwicklung
- Physik und Astronomie (insg.)
- Instrumentierung
- Erdkunde und Planetologie (insg.)
- Erdkunde und Planetologie (sonstige)
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, Jahrgang 92, Nr. 5, 10.2024, S. 609–627.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Challenges and Opportunities of Sentinel-1 InSAR for Transport Infrastructure Monitoring
AU - Piter, Andreas
AU - Haghshenas Haghighi, Mahmud
AU - Motagh, Mahdi
N1 - Publisher Copyright: © The Author(s) 2024.
PY - 2024/10
Y1 - 2024/10
N2 - Monitoring displacement at transport infrastructure using Sentinel‑1 Interferometric Synthetic Aperture Radar (InSAR) faces challenges due to the sensor’s medium spatial resolution, which limits the pixel coverage over the infrastructure. Therefore, carefully selecting coherent pixels is crucial to achieve a high density of reliable measurement points and to minimize noisy observations. This study evaluates the effectiveness of various pixel selection methods for displacement monitoring within transport infrastructures. We employ a two-step InSAR time series processing approach. First, high-quality first-order pixels are selected using temporal phase coherence (TPC) to estimate and correct atmospheric contributions. Then, a combination of different pixel selection methods is applied to identify coherent second-order pixels for displacement analysis. These methods include amplitude dispersion index (ADI), TPC, phase linking coherence (PLC), and top eigenvalue percentage (TEP), targeting both point-like scatterer (PS) and distributed scatterer (DS) pixels. Experiments are conducted in two case studies: one in Germany, characterized by dense vegetation, and one in Spain, with sparse vegetation. In Germany, the density of measurement points was approximately 30 points/km², with the longest segment of the infrastructure without any coherent pixels being 2.8 km. In Spain, the density of measurement points exceeded 500 points/km², with the longest section without coherent pixels being 700 meters. The results indicate that despite the challenges posed by medium-resolution data, the sensor is capable of providing adequate measurement points when suitable pixel selection methods are employed. However, careful consideration is necessary to exclude noisy pixels from the analysis. The findings highlight the importance of choosing a proper method tailored to infrastructure characteristics. Specifically, combining TPC and PLC methods offers a complementary set of pixels suitable for displacement measurements, whereas ADI and TEP are less effective in this context. This study demonstrates the potential of Sentinel‑1 InSAR for capturing both regional-scale and localized displacements at transport infrastructure.
AB - Monitoring displacement at transport infrastructure using Sentinel‑1 Interferometric Synthetic Aperture Radar (InSAR) faces challenges due to the sensor’s medium spatial resolution, which limits the pixel coverage over the infrastructure. Therefore, carefully selecting coherent pixels is crucial to achieve a high density of reliable measurement points and to minimize noisy observations. This study evaluates the effectiveness of various pixel selection methods for displacement monitoring within transport infrastructures. We employ a two-step InSAR time series processing approach. First, high-quality first-order pixels are selected using temporal phase coherence (TPC) to estimate and correct atmospheric contributions. Then, a combination of different pixel selection methods is applied to identify coherent second-order pixels for displacement analysis. These methods include amplitude dispersion index (ADI), TPC, phase linking coherence (PLC), and top eigenvalue percentage (TEP), targeting both point-like scatterer (PS) and distributed scatterer (DS) pixels. Experiments are conducted in two case studies: one in Germany, characterized by dense vegetation, and one in Spain, with sparse vegetation. In Germany, the density of measurement points was approximately 30 points/km², with the longest segment of the infrastructure without any coherent pixels being 2.8 km. In Spain, the density of measurement points exceeded 500 points/km², with the longest section without coherent pixels being 700 meters. The results indicate that despite the challenges posed by medium-resolution data, the sensor is capable of providing adequate measurement points when suitable pixel selection methods are employed. However, careful consideration is necessary to exclude noisy pixels from the analysis. The findings highlight the importance of choosing a proper method tailored to infrastructure characteristics. Specifically, combining TPC and PLC methods offers a complementary set of pixels suitable for displacement measurements, whereas ADI and TEP are less effective in this context. This study demonstrates the potential of Sentinel‑1 InSAR for capturing both regional-scale and localized displacements at transport infrastructure.
KW - InSAR
KW - Pixel selection
KW - Sentinel‑1
KW - Transport infrastructure
UR - http://www.scopus.com/inward/record.url?scp=85204010942&partnerID=8YFLogxK
U2 - 10.1007/s41064-024-00314-x
DO - 10.1007/s41064-024-00314-x
M3 - Article
AN - SCOPUS:85204010942
VL - 92
SP - 609
EP - 627
JO - PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science
JF - PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science
SN - 2512-2789
IS - 5
ER -