Details
Originalsprache | Englisch |
---|---|
Fachzeitschrift | Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics |
Jahrgang | 65 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 18 Dez. 2001 |
Abstract
We present lattice-gas modeling of the steady-state behavior in CO oxidation on the facets of nanoscale metal clusters, with coupling via interfacet CO diffusion. The model incorporates the key aspects of the reaction process, such as rapid CO mobility within each facet and strong nearest-neighbor repulsion between adsorbed O. The former justifies our use of a “hybrid” simulation approach treating the CO coverage as a mean-field parameter. For an isolated facet, there is one bistable region where the system can exist in either a reactive state (with high oxygen coverage) or a (nearly CO-poisoned) inactive state. Diffusion between two facets is shown to induce complex multistability in the steady states of the system. The bifurcation diagram exhibits two regions with bistabilities due to the difference between adsorption properties of the facets. We explore the role of enhanced fluctuations in the proximity of a cusp bifurcation point associated with one facet in producing transitions between stable states on that facet, as well as their influence on fluctuations on the other facet. The results are expected to shed more light on the reaction kinetics for supported catalysts.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Statistische und nichtlineare Physik
- Mathematik (insg.)
- Statistik und Wahrscheinlichkeit
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, Jahrgang 65, Nr. 1, 18.12.2001.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Catalytic CO oxidation on nanoscale Pt facets
T2 - Effect of interfacet CO diffusion on bifurcation and fluctuation behavior
AU - Pavlenko, N.
AU - Evans, J. W.
AU - Liu, Da Jiang
AU - Imbihl, R.
PY - 2001/12/18
Y1 - 2001/12/18
N2 - We present lattice-gas modeling of the steady-state behavior in CO oxidation on the facets of nanoscale metal clusters, with coupling via interfacet CO diffusion. The model incorporates the key aspects of the reaction process, such as rapid CO mobility within each facet and strong nearest-neighbor repulsion between adsorbed O. The former justifies our use of a “hybrid” simulation approach treating the CO coverage as a mean-field parameter. For an isolated facet, there is one bistable region where the system can exist in either a reactive state (with high oxygen coverage) or a (nearly CO-poisoned) inactive state. Diffusion between two facets is shown to induce complex multistability in the steady states of the system. The bifurcation diagram exhibits two regions with bistabilities due to the difference between adsorption properties of the facets. We explore the role of enhanced fluctuations in the proximity of a cusp bifurcation point associated with one facet in producing transitions between stable states on that facet, as well as their influence on fluctuations on the other facet. The results are expected to shed more light on the reaction kinetics for supported catalysts.
AB - We present lattice-gas modeling of the steady-state behavior in CO oxidation on the facets of nanoscale metal clusters, with coupling via interfacet CO diffusion. The model incorporates the key aspects of the reaction process, such as rapid CO mobility within each facet and strong nearest-neighbor repulsion between adsorbed O. The former justifies our use of a “hybrid” simulation approach treating the CO coverage as a mean-field parameter. For an isolated facet, there is one bistable region where the system can exist in either a reactive state (with high oxygen coverage) or a (nearly CO-poisoned) inactive state. Diffusion between two facets is shown to induce complex multistability in the steady states of the system. The bifurcation diagram exhibits two regions with bistabilities due to the difference between adsorption properties of the facets. We explore the role of enhanced fluctuations in the proximity of a cusp bifurcation point associated with one facet in producing transitions between stable states on that facet, as well as their influence on fluctuations on the other facet. The results are expected to shed more light on the reaction kinetics for supported catalysts.
UR - http://www.scopus.com/inward/record.url?scp=41349097458&partnerID=8YFLogxK
U2 - 10.48550/arXiv.cond-mat/0109295
DO - 10.48550/arXiv.cond-mat/0109295
M3 - Article
AN - SCOPUS:41349097458
VL - 65
JO - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
JF - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
SN - 1063-651X
IS - 1
ER -