Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 062004 |
Seitenumfang | 11 |
Fachzeitschrift | Physical Review D |
Jahrgang | 96 |
Ausgabenummer | 6 |
Publikationsstatus | Veröffentlicht - 26 Sept. 2017 |
Abstract
We report on the performance of the capacitive gap-sensing system of the Gravitational Reference Sensor on board the LISA Pathfinder spacecraft. From in-flight measurements, the system has demonstrated a performance, down to 1 mHz, that is ranging between 0.7 and 1.8 aF Hz-1/2. That translates into a sensing noise of the test mass motion within 1.2 and 2.4 nm Hz-1/2 in displacement and within 83 and 170 nrad Hz-1/2 in rotation. This matches the performance goals for LISA Pathfinder, and it allows the successful implementation of the gravitational waves observatory LISA. A 1/f tail has been observed for frequencies below 1 mHz, the tail has been investigated in detail with dedicated in-flight measurements, and a model is presented in the paper. A projection of such noise to frequencies below 0.1 mHz shows that an improvement of performance at those frequencies is desirable for the next generation of gravitational reference sensors for space-borne gravitational waves observation.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Physik und Astronomie (sonstige)
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical Review D, Jahrgang 96, Nr. 6, 062004, 26.09.2017.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung
}
TY - JOUR
T1 - Capacitive sensing of test mass motion with nanometer precision over millimeter-wide sensing gaps for space-borne gravitational reference sensors
AU - LISA Pathfinder Collaboration
AU - Armano, M.
AU - Audley, H.
AU - Auger, G.
AU - Baird, J.
AU - Bassan, M.
AU - Binetruy, P.
AU - Born, M.
AU - Bortoluzzi, D.
AU - Brandt, N.
AU - Caleno, M.
AU - Cavalleri, A.
AU - Cesarini, A.
AU - Cruise, A. M.
AU - Danzmann, K.
AU - De Deus Silva, M.
AU - De Rosa, R.
AU - Di Fiore, L.
AU - Diepholz, I.
AU - Dixon, G.
AU - Dolesi, R.
AU - Dunbar, N.
AU - Ferraioli, L.
AU - Ferroni, V.
AU - Fitzsimons, E. D.
AU - Flatscher, R.
AU - Freschi, M.
AU - García Marirrodriga, C.
AU - Gerndt, R.
AU - Gesa, L.
AU - Gibert, F.
AU - Giardini, D.
AU - Giusteri, R.
AU - Grado, A.
AU - Grimani, C.
AU - Grzymisch, J.
AU - Harrison, I.
AU - Heinzel, G.
AU - Hewitson, M.
AU - Hollington, D.
AU - Hoyland, D.
AU - Hueller, M.
AU - Inchauspé, H.
AU - Jennrich, O.
AU - Jetzer, P.
AU - Johlander, B.
AU - Karnesis, N.
AU - Kaune, B.
AU - Korsakova, N.
AU - Killow, C. J.
AU - Lobo, J. A.
AU - Mance, D.
AU - Martín, Victoria
AU - Martin-Polo, L.
AU - Martino, J.
AU - Martin-Porqueras, F.
AU - Madden, S.
AU - Mateos, Ignacio
AU - McNamara, P. W.
AU - Mendes, J.
AU - Mendes, Lucas W
AU - Meshksar, N.
AU - Nofrarias, Miguel
AU - Paczkowski, S.
AU - Perreur-Lloyd, M.
AU - Petiteau, A.
AU - Pivato, P.
AU - Plagnol, E.
AU - Prat, Pierre
AU - Ragnit, U.
AU - Ramos-Castro, J.
AU - Reichel, J.
AU - Robertson, D. I.
AU - Rozemeijer, H.
AU - Rivas, F.
AU - Russano, G.
AU - Sarra, P.
AU - Schleicher, A.
AU - Slutsky, J.
AU - Sopuerta, Carlos F.
AU - Stanga, R.
AU - Sumner, Tim J.
AU - Texier, D.
AU - Thorpe, J. I.
AU - Trenkel, Christian
AU - Tröbs, Michael
AU - Vetrugno, D.
AU - Zambotti, A.
AU - Zanoni, Carlo
AU - Ziegler, T.
AU - Zweifel, Philipp
N1 - Funding information: This work has been made possible by the LISA Pathfinder mission, which is part of the space-science program of the European Space Agency. The French contribution has been supported by CNES (Accord Specific de Projet No. CNES 1316634/CNRS 103747), the CNRS, the Observatoire de Paris, and the University Paris-Diderot. E. P. and H. I. would also like to acknowledge the financial support of the UnivEarthS Labex program at Sorbonne Paris Cit (Grants No. ANR-10-LABX-0023 and No. ANR-11-IDEX-0005-02). The Albert-Einstein-Institut acknowledges the support of the German Space Agency, DLR. The work is supported by the Federal Ministry for Economic Affairs and Energy based on a resolution of the German Bundestag (Grants No. FKZ 50OQ0501 and No. FKZ 50OQ1601). The Italian contribution has been supported by Agenzia Spaziale Italiana and Instituto Nazionale di Fisica Nucleare. The Spanish contribution has been supported by Contracts No. AYA2010-15709 (MICINN), No. ESP2013-47637-P, and No. ESP2015-67234-P (MINECO). M. N. acknowledges support from Fundacion General CSIC (Programa ComFuturo). F. R. acknowledges support from a Formacion de Personal Investigador (MINECO) contract. The Swiss contribution acknowledges the support of the Swiss Space Office via the PRODEX Programme of ESA. L. F. acknowledges the support of the Swiss National Science Foundation (Project No. 162449). The United Kingdom groups wish to acknowledge support from the United Kingdom Space Agency, the University of Glasgow, the University of Birmingham, Imperial College London, and the Scottish Universities Physics Alliance. N. K. would like to acknowledge the support of the Newton International Fellowship from the Royal Society. J. I. T. and J. S. acknowledge the support of NASA.
PY - 2017/9/26
Y1 - 2017/9/26
N2 - We report on the performance of the capacitive gap-sensing system of the Gravitational Reference Sensor on board the LISA Pathfinder spacecraft. From in-flight measurements, the system has demonstrated a performance, down to 1 mHz, that is ranging between 0.7 and 1.8 aF Hz-1/2. That translates into a sensing noise of the test mass motion within 1.2 and 2.4 nm Hz-1/2 in displacement and within 83 and 170 nrad Hz-1/2 in rotation. This matches the performance goals for LISA Pathfinder, and it allows the successful implementation of the gravitational waves observatory LISA. A 1/f tail has been observed for frequencies below 1 mHz, the tail has been investigated in detail with dedicated in-flight measurements, and a model is presented in the paper. A projection of such noise to frequencies below 0.1 mHz shows that an improvement of performance at those frequencies is desirable for the next generation of gravitational reference sensors for space-borne gravitational waves observation.
AB - We report on the performance of the capacitive gap-sensing system of the Gravitational Reference Sensor on board the LISA Pathfinder spacecraft. From in-flight measurements, the system has demonstrated a performance, down to 1 mHz, that is ranging between 0.7 and 1.8 aF Hz-1/2. That translates into a sensing noise of the test mass motion within 1.2 and 2.4 nm Hz-1/2 in displacement and within 83 and 170 nrad Hz-1/2 in rotation. This matches the performance goals for LISA Pathfinder, and it allows the successful implementation of the gravitational waves observatory LISA. A 1/f tail has been observed for frequencies below 1 mHz, the tail has been investigated in detail with dedicated in-flight measurements, and a model is presented in the paper. A projection of such noise to frequencies below 0.1 mHz shows that an improvement of performance at those frequencies is desirable for the next generation of gravitational reference sensors for space-borne gravitational waves observation.
UR - http://www.scopus.com/inward/record.url?scp=85031693077&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.96.062004
DO - 10.1103/PhysRevD.96.062004
M3 - Article
VL - 96
JO - Physical Review D
JF - Physical Review D
SN - 2470-0010
IS - 6
M1 - 062004
ER -