Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 386-390 |
Seitenumfang | 5 |
Fachzeitschrift | Journal of the Korean Physical Society |
Jahrgang | 81 |
Ausgabenummer | 5 |
Frühes Online-Datum | 29 Juni 2022 |
Publikationsstatus | Veröffentlicht - Sept. 2022 |
Abstract
In this paper, numerical calculations of the Berry curvature and Chern number of two types of two-dimensional photonic crystals consisting isotropic dielectric and anisotropic magneto-optical, gyromagnetic, rods in air in a square lattice are studied. The Chern number, an integer number, is a key parameter to distinguish between trivial and non-trivial photonic crystals. Trivial and non-trivial photonic crystals reveal zero and non-zero Chern numbers. A non-zero Chern number is achieved through the breaking of time-reversal and inversion symmetries. The results for two-dimensional photonic crystals containing isotropic dielectric and gyromagnetic materials under TM mode illustrate zero and 0, 1, -2, and -1 Chern numbers for the first four bands, respectively.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of the Korean Physical Society, Jahrgang 81, Nr. 5, 09.2022, S. 386-390.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Calculation of the Berry curvature and Chern number of topological photonic crystals
AU - Goudarzi, Kiyanoush
AU - Maragheh, Hatef Ghannadi
AU - Lee, Moonjoo
N1 - Funding Information: We wish to acknowledge the financial support from the BK21 FOUR program and Educational Institute for Intelligent Information Integration, Samsung Electronics Co., Ltd (IO201211-08121-01), and Samsung Science and Technology Foundation (SRFC-TC2103-01).
PY - 2022/9
Y1 - 2022/9
N2 - In this paper, numerical calculations of the Berry curvature and Chern number of two types of two-dimensional photonic crystals consisting isotropic dielectric and anisotropic magneto-optical, gyromagnetic, rods in air in a square lattice are studied. The Chern number, an integer number, is a key parameter to distinguish between trivial and non-trivial photonic crystals. Trivial and non-trivial photonic crystals reveal zero and non-zero Chern numbers. A non-zero Chern number is achieved through the breaking of time-reversal and inversion symmetries. The results for two-dimensional photonic crystals containing isotropic dielectric and gyromagnetic materials under TM mode illustrate zero and 0, 1, -2, and -1 Chern numbers for the first four bands, respectively.
AB - In this paper, numerical calculations of the Berry curvature and Chern number of two types of two-dimensional photonic crystals consisting isotropic dielectric and anisotropic magneto-optical, gyromagnetic, rods in air in a square lattice are studied. The Chern number, an integer number, is a key parameter to distinguish between trivial and non-trivial photonic crystals. Trivial and non-trivial photonic crystals reveal zero and non-zero Chern numbers. A non-zero Chern number is achieved through the breaking of time-reversal and inversion symmetries. The results for two-dimensional photonic crystals containing isotropic dielectric and gyromagnetic materials under TM mode illustrate zero and 0, 1, -2, and -1 Chern numbers for the first four bands, respectively.
KW - Berry curvature
KW - Chern number
KW - Time-reversal symmetry
KW - Topological photonic crystals
UR - http://www.scopus.com/inward/record.url?scp=85133174823&partnerID=8YFLogxK
U2 - 10.1007/s40042-022-00530-x
DO - 10.1007/s40042-022-00530-x
M3 - Article
AN - SCOPUS:85133174823
VL - 81
SP - 386
EP - 390
JO - Journal of the Korean Physical Society
JF - Journal of the Korean Physical Society
SN - 0374-4884
IS - 5
ER -