Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Real-time Measurements, Rogue Phenomena, and Single-Shot Applications VII |
Herausgeber/-innen | Daniel R. Solli, Georg Herink, Serge Bielawski |
Herausgeber (Verlag) | SPIE |
Seitenumfang | 6 |
ISBN (elektronisch) | 9781510648432 |
Publikationsstatus | Veröffentlicht - 2022 |
Veranstaltung | Real-time Measurements, Rogue Phenomena, and Single-Shot Applications VII 2022 - Virtual, Online Dauer: 20 Feb. 2022 → 24 Feb. 2022 |
Publikationsreihe
Name | Proceedings of SPIE - The International Society for Optical Engineering |
---|---|
Band | 11986 |
ISSN (Print) | 0277-786X |
ISSN (elektronisch) | 1996-756X |
Abstract
Soliton solutions of the Haus master equation and the transverse wave equation are discussed. These solutions are obtained by converting the eigenvalue problem of a differential operator into an algebraic problem. Compared to free space solutions of the respective equation, the solutions space shrinks to discrete soliton solutions, which often strongly deviate from the well-known bell-shaped free space solutions. We find qualitatively very similar solutions describing two very different physical scenarios. As these solitons show a similar reaction to a limited support in the Fourier domain, we term these characteristic profiles cage solitons.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Informatik (insg.)
- Angewandte Informatik
- Mathematik (insg.)
- Angewandte Mathematik
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Real-time Measurements, Rogue Phenomena, and Single-Shot Applications VII. Hrsg. / Daniel R. Solli; Georg Herink; Serge Bielawski. SPIE, 2022. 1198602 (Proceedings of SPIE - The International Society for Optical Engineering; Band 11986).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Cage solitons
AU - Steinmeyer, Günter
AU - Nagy, Tamas
AU - Babushkin, Ihar
AU - Mei, Chao
PY - 2022
Y1 - 2022
N2 - Soliton solutions of the Haus master equation and the transverse wave equation are discussed. These solutions are obtained by converting the eigenvalue problem of a differential operator into an algebraic problem. Compared to free space solutions of the respective equation, the solutions space shrinks to discrete soliton solutions, which often strongly deviate from the well-known bell-shaped free space solutions. We find qualitatively very similar solutions describing two very different physical scenarios. As these solitons show a similar reaction to a limited support in the Fourier domain, we term these characteristic profiles cage solitons.
AB - Soliton solutions of the Haus master equation and the transverse wave equation are discussed. These solutions are obtained by converting the eigenvalue problem of a differential operator into an algebraic problem. Compared to free space solutions of the respective equation, the solutions space shrinks to discrete soliton solutions, which often strongly deviate from the well-known bell-shaped free space solutions. We find qualitatively very similar solutions describing two very different physical scenarios. As these solitons show a similar reaction to a limited support in the Fourier domain, we term these characteristic profiles cage solitons.
KW - few-cycle pulses
KW - Haus master equation
KW - hollow fiber compressor
KW - mode-locking
KW - Solitons
KW - transverse wave equation
UR - http://www.scopus.com/inward/record.url?scp=85131429182&partnerID=8YFLogxK
U2 - 10.1117/12.2612337
DO - 10.1117/12.2612337
M3 - Conference contribution
AN - SCOPUS:85131429182
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Real-time Measurements, Rogue Phenomena, and Single-Shot Applications VII
A2 - Solli, Daniel R.
A2 - Herink, Georg
A2 - Bielawski, Serge
PB - SPIE
T2 - Real-time Measurements, Rogue Phenomena, and Single-Shot Applications VII 2022
Y2 - 20 February 2022 through 24 February 2022
ER -