Caccioppoli-type estimates and H -matrix approximations to inverses for FEM-BEM couplings

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Markus Faustmann
  • Jens Markus Melenk
  • Maryam Parvizi
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)849-892
Seitenumfang44
FachzeitschriftNumerische Mathematik
Jahrgang150
Ausgabenummer3
Frühes Online-Datum11 Feb. 2022
PublikationsstatusVeröffentlicht - März 2022

Abstract

We consider three different methods for the coupling of the finite element method and the boundary element method, the Bielak–MacCamy coupling, the symmetric coupling, and the Johnson–Nédélec coupling. For each coupling, we provide discrete interior regularity estimates. As a consequence, we are able to prove the existence of exponentially convergent H-matrix approximants to the inverse matrices corresponding to the lowest order Galerkin discretizations of the couplings.

ASJC Scopus Sachgebiete

Zitieren

Caccioppoli-type estimates and H -matrix approximations to inverses for FEM-BEM couplings. / Faustmann, Markus; Melenk, Jens Markus; Parvizi, Maryam.
in: Numerische Mathematik, Jahrgang 150, Nr. 3, 03.2022, S. 849-892.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Faustmann M, Melenk JM, Parvizi M. Caccioppoli-type estimates and H -matrix approximations to inverses for FEM-BEM couplings. Numerische Mathematik. 2022 Mär;150(3):849-892. Epub 2022 Feb 11. doi: 10.48550/arXiv.2008.11498, 10.1007/s00211-021-01261-0
Faustmann, Markus ; Melenk, Jens Markus ; Parvizi, Maryam. / Caccioppoli-type estimates and H -matrix approximations to inverses for FEM-BEM couplings. in: Numerische Mathematik. 2022 ; Jahrgang 150, Nr. 3. S. 849-892.
Download
@article{1502f2ee0fa34b9cbb6f474174de9395,
title = "Caccioppoli-type estimates and H -matrix approximations to inverses for FEM-BEM couplings",
abstract = "We consider three different methods for the coupling of the finite element method and the boundary element method, the Bielak–MacCamy coupling, the symmetric coupling, and the Johnson–N{\'e}d{\'e}lec coupling. For each coupling, we provide discrete interior regularity estimates. As a consequence, we are able to prove the existence of exponentially convergent H-matrix approximants to the inverse matrices corresponding to the lowest order Galerkin discretizations of the couplings.",
author = "Markus Faustmann and Melenk, {Jens Markus} and Maryam Parvizi",
note = "Funding Information: MP was funded by the Austrian Science Fund (FWF) project P 28367 and JMM was supported by the Austrian Science Fund (FWF) by the special research program Taming complexity in PDE systems (Grant SFB F65). Open access funding provided by TU Wien (TUW)",
year = "2022",
month = mar,
doi = "10.48550/arXiv.2008.11498",
language = "English",
volume = "150",
pages = "849--892",
journal = "Numerische Mathematik",
issn = "0029-599X",
publisher = "Springer New York",
number = "3",

}

Download

TY - JOUR

T1 - Caccioppoli-type estimates and H -matrix approximations to inverses for FEM-BEM couplings

AU - Faustmann, Markus

AU - Melenk, Jens Markus

AU - Parvizi, Maryam

N1 - Funding Information: MP was funded by the Austrian Science Fund (FWF) project P 28367 and JMM was supported by the Austrian Science Fund (FWF) by the special research program Taming complexity in PDE systems (Grant SFB F65). Open access funding provided by TU Wien (TUW)

PY - 2022/3

Y1 - 2022/3

N2 - We consider three different methods for the coupling of the finite element method and the boundary element method, the Bielak–MacCamy coupling, the symmetric coupling, and the Johnson–Nédélec coupling. For each coupling, we provide discrete interior regularity estimates. As a consequence, we are able to prove the existence of exponentially convergent H-matrix approximants to the inverse matrices corresponding to the lowest order Galerkin discretizations of the couplings.

AB - We consider three different methods for the coupling of the finite element method and the boundary element method, the Bielak–MacCamy coupling, the symmetric coupling, and the Johnson–Nédélec coupling. For each coupling, we provide discrete interior regularity estimates. As a consequence, we are able to prove the existence of exponentially convergent H-matrix approximants to the inverse matrices corresponding to the lowest order Galerkin discretizations of the couplings.

UR - http://www.scopus.com/inward/record.url?scp=85124653194&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2008.11498

DO - 10.48550/arXiv.2008.11498

M3 - Article

AN - SCOPUS:85124653194

VL - 150

SP - 849

EP - 892

JO - Numerische Mathematik

JF - Numerische Mathematik

SN - 0029-599X

IS - 3

ER -