Bounds on the number of irreducible Brauer characters in blocks of finite groups of exceptional Lie type

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Ruwen Hollenbach
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)199-221
Seitenumfang23
FachzeitschriftJournal of algebra
Jahrgang580
Frühes Online-Datum14 Apr. 2021
PublikationsstatusVeröffentlicht - 15 Aug. 2021

Abstract

Let G be a simple, simply connected linear algebraic group of exceptional type defined over Fq with Frobenius endomorphism F:G→G. In this work we give upper bounds for the number of irreducible Brauer characters in the quasi-isolated ℓ-blocks of GF and GF/Z(GF) when the prime ℓ is bad for G.

ASJC Scopus Sachgebiete

Zitieren

Bounds on the number of irreducible Brauer characters in blocks of finite groups of exceptional Lie type. / Hollenbach, Ruwen.
in: Journal of algebra, Jahrgang 580, 15.08.2021, S. 199-221.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Hollenbach R. Bounds on the number of irreducible Brauer characters in blocks of finite groups of exceptional Lie type. Journal of algebra. 2021 Aug 15;580:199-221. Epub 2021 Apr 14. doi: 10.1016/j.jalgebra.2021.03.034
Download
@article{9b3af4fbe2454744b354a22145238992,
title = "Bounds on the number of irreducible Brauer characters in blocks of finite groups of exceptional Lie type",
abstract = "Let G be a simple, simply connected linear algebraic group of exceptional type defined over Fq with Frobenius endomorphism F:G→G. In this work we give upper bounds for the number of irreducible Brauer characters in the quasi-isolated ℓ-blocks of GF and GF/Z(GF) when the prime ℓ is bad for G.",
keywords = "Bad primes, Inequalities for blocks of finite groups of Lie type, Number of simple modules",
author = "Ruwen Hollenbach",
year = "2021",
month = aug,
day = "15",
doi = "10.1016/j.jalgebra.2021.03.034",
language = "English",
volume = "580",
pages = "199--221",
journal = "Journal of algebra",
issn = "0021-8693",
publisher = "Academic Press Inc.",

}

Download

TY - JOUR

T1 - Bounds on the number of irreducible Brauer characters in blocks of finite groups of exceptional Lie type

AU - Hollenbach, Ruwen

PY - 2021/8/15

Y1 - 2021/8/15

N2 - Let G be a simple, simply connected linear algebraic group of exceptional type defined over Fq with Frobenius endomorphism F:G→G. In this work we give upper bounds for the number of irreducible Brauer characters in the quasi-isolated ℓ-blocks of GF and GF/Z(GF) when the prime ℓ is bad for G.

AB - Let G be a simple, simply connected linear algebraic group of exceptional type defined over Fq with Frobenius endomorphism F:G→G. In this work we give upper bounds for the number of irreducible Brauer characters in the quasi-isolated ℓ-blocks of GF and GF/Z(GF) when the prime ℓ is bad for G.

KW - Bad primes

KW - Inequalities for blocks of finite groups of Lie type

KW - Number of simple modules

UR - http://www.scopus.com/inward/record.url?scp=85104088389&partnerID=8YFLogxK

U2 - 10.1016/j.jalgebra.2021.03.034

DO - 10.1016/j.jalgebra.2021.03.034

M3 - Article

AN - SCOPUS:85104088389

VL - 580

SP - 199

EP - 221

JO - Journal of algebra

JF - Journal of algebra

SN - 0021-8693

ER -