Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 199-221 |
Seitenumfang | 23 |
Fachzeitschrift | Journal of algebra |
Jahrgang | 580 |
Frühes Online-Datum | 14 Apr. 2021 |
Publikationsstatus | Veröffentlicht - 15 Aug. 2021 |
Abstract
Let G be a simple, simply connected linear algebraic group of exceptional type defined over Fq with Frobenius endomorphism F:G→G. In this work we give upper bounds for the number of irreducible Brauer characters in the quasi-isolated ℓ-blocks of GF and GF/Z(GF) when the prime ℓ is bad for G.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Algebra und Zahlentheorie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of algebra, Jahrgang 580, 15.08.2021, S. 199-221.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Bounds on the number of irreducible Brauer characters in blocks of finite groups of exceptional Lie type
AU - Hollenbach, Ruwen
PY - 2021/8/15
Y1 - 2021/8/15
N2 - Let G be a simple, simply connected linear algebraic group of exceptional type defined over Fq with Frobenius endomorphism F:G→G. In this work we give upper bounds for the number of irreducible Brauer characters in the quasi-isolated ℓ-blocks of GF and GF/Z(GF) when the prime ℓ is bad for G.
AB - Let G be a simple, simply connected linear algebraic group of exceptional type defined over Fq with Frobenius endomorphism F:G→G. In this work we give upper bounds for the number of irreducible Brauer characters in the quasi-isolated ℓ-blocks of GF and GF/Z(GF) when the prime ℓ is bad for G.
KW - Bad primes
KW - Inequalities for blocks of finite groups of Lie type
KW - Number of simple modules
UR - http://www.scopus.com/inward/record.url?scp=85104088389&partnerID=8YFLogxK
U2 - 10.1016/j.jalgebra.2021.03.034
DO - 10.1016/j.jalgebra.2021.03.034
M3 - Article
AN - SCOPUS:85104088389
VL - 580
SP - 199
EP - 221
JO - Journal of algebra
JF - Journal of algebra
SN - 0021-8693
ER -