Boundedness of solutions to a virus infection model with saturated chemotaxis

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Bingran Hu
  • J. Lankeit

Externe Organisationen

  • Donghua University
  • Universität Paderborn
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)344-358
Seitenumfang15
FachzeitschriftJournal of Mathematical Analysis and Applications
Jahrgang468
Ausgabenummer1
PublikationsstatusVeröffentlicht - 2018
Extern publiziertJa

Abstract

We show global existence and boundedness of classical solutions to a virus infection model with chemotaxis in bounded smooth domains of arbitrary dimension and for any sufficiently regular nonnegative initial data and homogeneous Neumann boundary conditions. More precisely, the system considered is u t=Δu−∇⋅([Formula presented]∇v)−uw+κ−u,v t=Δv+uw−v,w t=Δw−w+v, with κ≥0, and solvability and boundedness of the solution are shown under the condition that {α>[Formula presented],if n=1α>[Formula presented]+[Formula presented],if 2≤n≤4α>[Formula presented],if n≥5.

ASJC Scopus Sachgebiete

Zitieren

Boundedness of solutions to a virus infection model with saturated chemotaxis. / Hu, Bingran; Lankeit, J.
in: Journal of Mathematical Analysis and Applications, Jahrgang 468, Nr. 1, 2018, S. 344-358.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Hu B, Lankeit J. Boundedness of solutions to a virus infection model with saturated chemotaxis. Journal of Mathematical Analysis and Applications. 2018;468(1):344-358. doi: 10.48550/arXiv.1711.01226, 10.1016/j.jmaa.2018.08.019
Download
@article{a8a6e71403804e82b958f89cc346a83c,
title = "Boundedness of solutions to a virus infection model with saturated chemotaxis",
abstract = "We show global existence and boundedness of classical solutions to a virus infection model with chemotaxis in bounded smooth domains of arbitrary dimension and for any sufficiently regular nonnegative initial data and homogeneous Neumann boundary conditions. More precisely, the system considered is u t=Δu−∇⋅([Formula presented]∇v)−uw+κ−u,v t=Δv+uw−v,w t=Δw−w+v, with κ≥0, and solvability and boundedness of the solution are shown under the condition that {α>[Formula presented],if n=1α>[Formula presented]+[Formula presented],if 2≤n≤4α>[Formula presented],if n≥5.",
keywords = "Boundedness, Chemotaxis, Classical solvability, Virus infection model",
author = "Bingran Hu and J. Lankeit",
note = "Publisher Copyright: {\textcopyright} 2018 Elsevier Inc.",
year = "2018",
doi = "10.48550/arXiv.1711.01226",
language = "English",
volume = "468",
pages = "344--358",
journal = "Journal of Mathematical Analysis and Applications",
issn = "0022-247X",
publisher = "Academic Press Inc.",
number = "1",

}

Download

TY - JOUR

T1 - Boundedness of solutions to a virus infection model with saturated chemotaxis

AU - Hu, Bingran

AU - Lankeit, J.

N1 - Publisher Copyright: © 2018 Elsevier Inc.

PY - 2018

Y1 - 2018

N2 - We show global existence and boundedness of classical solutions to a virus infection model with chemotaxis in bounded smooth domains of arbitrary dimension and for any sufficiently regular nonnegative initial data and homogeneous Neumann boundary conditions. More precisely, the system considered is u t=Δu−∇⋅([Formula presented]∇v)−uw+κ−u,v t=Δv+uw−v,w t=Δw−w+v, with κ≥0, and solvability and boundedness of the solution are shown under the condition that {α>[Formula presented],if n=1α>[Formula presented]+[Formula presented],if 2≤n≤4α>[Formula presented],if n≥5.

AB - We show global existence and boundedness of classical solutions to a virus infection model with chemotaxis in bounded smooth domains of arbitrary dimension and for any sufficiently regular nonnegative initial data and homogeneous Neumann boundary conditions. More precisely, the system considered is u t=Δu−∇⋅([Formula presented]∇v)−uw+κ−u,v t=Δv+uw−v,w t=Δw−w+v, with κ≥0, and solvability and boundedness of the solution are shown under the condition that {α>[Formula presented],if n=1α>[Formula presented]+[Formula presented],if 2≤n≤4α>[Formula presented],if n≥5.

KW - Boundedness

KW - Chemotaxis

KW - Classical solvability

KW - Virus infection model

UR - http://www.scopus.com/inward/record.url?scp=85051813896&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1711.01226

DO - 10.48550/arXiv.1711.01226

M3 - Article

VL - 468

SP - 344

EP - 358

JO - Journal of Mathematical Analysis and Applications

JF - Journal of Mathematical Analysis and Applications

SN - 0022-247X

IS - 1

ER -